Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariants of semisimple Lie algebras acting on associative algebras


Author: Piotr Grzeszczuk
Journal: Proc. Amer. Math. Soc. 131 (2003), 709-717
MSC (2000): Primary 16W25; Secondary 16R20, 16U20
DOI: https://doi.org/10.1090/S0002-9939-02-06854-5
Published electronically: July 25, 2002
MathSciNet review: 1937407
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If ${\mathfrak g}$ is a Lie algebra of derivations of an associative algebra $R$, then the subalgebra of invariants is the set $R^{\mathfrak g} = \{ r \in R \mid \delta(r) = 0 \text{ for all } \delta \in {\mathfrak g}\}.$ In this paper, we study the relationship between the structure of $R^{\mathfrak g}$ and the structure of $R$, where $\mathfrak g$ is a finite dimensional semisimple Lie algebra over a field of characteristic zero acting finitely on $R$, when $R$ is semiprime.


References [Enhancements On Off] (What's this?)

  • 1. K.I. Beidar, Rings of quotients of semiprime rings, Vestnik Moscow. Univers. Math. (1978), 36-43.
  • 2. K.I. Beidar and P. Grzeszczuk, Actions of Lie algebras on rings without nilpotent elements, Algebra Colloquium, 2 (1995), 105-116. MR 96f:16043
  • 3. K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, New York, 1996. MR 97g:16035
  • 4. J. Bergen and S. Montgomery, Smash products and outer derivations, Israel J. Math., 53 (1986), 321-345. MR 87i:16065
  • 5. J. Bergen, Constants of Lie algebra actions, J. Algebra, 114 (1988), 452-465. MR 89c:16048
  • 6. J. Bergen, Invariants of domains under the actions of restricted Lie algebras, J. Algebra, 177 (1995), 115-131. MR 97c:16045
  • 7. M. Cohen, Goldie centralizers of separable algebras, Michigan Math. J., 23 (1976), 185-191. MR 54:346
  • 8. P. Grzeszczuk, On nilpotent derivations of semiprime rings, J. Algebra, 149 (1992), 313-321. MR 93h:16068
  • 9. P. Grzeszczuk, Constants of algebraic derivations, Comm. in Algebra, 21 (1993), 1857-1868. MR 94f:16057
  • 10. N. Jacobson, Lie algebras, Dover Publications Inc., New York, 1979. MR 80k:17001
  • 11. I. Kaplansky, Lie algebras and locally compact groups, Lectures in Mathematics, University of Chicago Press, Chicago, 1971. MR 43:2145
  • 12. V.K. Kharchenko, Automorphisms and derivations of associative rings, Kluwer Academic Publishers, Dordrecht, vol. 69, 1991. MR 93i:16048
  • 13. V.K. Kharchenko, On derivations of prime rings of positive characteristic, Algebra i Logika, 35 (1996), 88-104. (English transl. Algebra and Logic, 35 (1996), 49-58.) MR 97j:16052
  • 14. V.K. Kharchenko, J. Keller and S. Rodriguez-Romo, Prime rings with PI rings of constants, Israel J. Math., 86 (1996), 357-377. MR 97k:16052
  • 15. T.Y. Lam, Lectures on Modules and Rings, Springer Verlag, New York, 1998. MR 99i:16001
  • 16. W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584. MR 39:257
  • 17. S. Montgomery, Centralizers of separable algebras, Michigan Math. J., 22 (1975), 15-24. MR 52:5721
  • 18. S. Montgomery and M. Smith, Algebras with a separable subalgebra whose centralizer satisfies a polynomial identity, Comm. in Algebra, 3 (1975), 151-168. MR 51:10386
  • 19. A.Z. Popov, Derivations of prime rings, Algebra i Logika, 22 (1983), 79-92. MR 85h:16043

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16W25, 16R20, 16U20

Retrieve articles in all journals with MSC (2000): 16W25, 16R20, 16U20


Additional Information

Piotr Grzeszczuk
Affiliation: Institute of Computer Science, Technical University of Białystok, Wiejska 45A, 15-351 Białystok, Poland
Email: piotrgr@cksr.ac.bialystok.pl

DOI: https://doi.org/10.1090/S0002-9939-02-06854-5
Received by editor(s): October 19, 2001
Published electronically: July 25, 2002
Additional Notes: The author was supported by Polish scientific grant KBN no. 2 P03A 039 14.
Communicated by: Martin Lorenz
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society