REGULARIZATION OF A_p WEIGHTS

RICHARD J. BAGBY AND BASEM MASAEDH

(Communicated by Andreas Seeger)

Abstract. We show how to approximate a given weight function in the class A_p by weights that are bounded above by multiples of their infima in such a way that the A_p constant is not increased. As an application, we show that the precise range of p for which a given weight is in A_p cannot be determined by extrapolating the A_p constants.

1. Introduction

For $1 < p < \infty$, the class $A_p(\mathbb{R}^n)$ consists of those locally integrable weight functions w that are positive almost everywhere and satisfy an a priori bound of the form

$$\left(\int_Q w(x) \, dx \right)^{1/p} \left(\int_Q w(x)^{1-p'} \, dx \right)^{1/p'} \leq A |Q|$$

for all cubes Q in \mathbb{R}^n; here p' is the Hölder conjugate of p, A is a constant depending on w and $|Q|$ is the Lebesgue measure of Q. The smallest value of A for which (1.1) can hold is called $A_p(w)$, the A_p-constant for w. These classes were introduced by B. Muckenhoupt [5] in connection with weighted inequalities for the Hardy-Littlewood maximal function, and were soon seen to have a number of remarkable properties. Note that Hölder’s inequality shows

$$|Q| = \int_Q w(x)^{1/p} w(x)^{-1/p} \, dx \leq \left(\int_Q w(x) \, dx \right)^{1/p} \left(\int_Q w(x)^{1-p'} \, dx \right)^{1/p'} ;$$

for that reason a condition such as (1.1) is often referred to as a reverse Hölder inequality. A simple application of Hölder’s inequality shows that $A_q(w) \leq A_p(w)$ whenever $p < q < \infty$, and several delicate arguments have been devised to show that, when $w \in A_p$, $A_q(w)$ must always be finite for all q in an open interval (p_0, ∞) that includes p. These arguments give upper bounds for p_0 and for $A_q(w)$ in terms of p, q and $A_p(w)$; see Muckenhoupt [5], Coifman and Fefferman [3], and Chung, Hunt, and Kurtz [2] as well as the related work by Gehring [4].

In [1], the authors showed how to derive Orlicz space bounds that substitute for $A_{p_0}(w)$ when p_0 is determined by such arguments, but left open the question of whether the best value of p_0 could be obtained by such methods. That is, must $A_{p_0}(w) = \infty$ for some weight having the given A_p-constant? Our results here do

Received by the editors September 12, 2001.
2000 Mathematics Subject Classification. Primary 42B25.
not answer that question, but do show that we can never determine $w \notin A_{p_{0}}$ by considering only values of $A_{p}(w)$ for finitely many $p > p_{0}$, each having $A_{p}(w) < \infty$.

Our investigations here develop a regularization principle that can be useful for establishing a priori bounds for classes of the form $\{w \in A_{p} : A_{p}(w) \leq M\}$. Given a locally integrable weight function w, we show how to construct a family of weights $\{w_{t} : t > 0\}$ such that each w_{t} and its reciprocal is uniformly bounded, with $A_{p}(w_{t}) \leq A_{p}(w)$ and $A_{p}(w) = \lim_{t \to 0+} A_{p}(w_{t})$. By working with w_{t} in place of w, we can improve some arguments by guaranteeing that all the integrals involved are finite.

2. Regularization of A_{p} weights

Given a locally integrable function w on \mathbb{R}^{n} that is positive almost everywhere, define

$$A_{p}(w) = \sup_{Q} \frac{1}{|Q|} \left(\int_{Q} w \right)^{1/p} \left(\int_{Q} w^{1-p'} \right)^{1/p'}$$

so that $w \in A_{p}$ if and only if $A_{p}(w) < \infty$. While $\int_{Q} w^{1-p'}$ need not be finite for all cubes, $\int_{Q} w$ is always positive so this supremum is well-defined, either as positive and real or as ∞. For $t > 0$ we define

$$w_{t}(x) = \frac{1}{t + 1/(t + w(x))} = \frac{t + w(x)}{t^{2} + tw(x) + 1},$$

the first form gives us $w_{t}(x) = 1/t$ when $w(x) = \infty$. Then $\lim_{t \to 0+} w_{t}(x) = w(x)$ pointwise, and $t/(t^{2} + 1) \leq w_{t}(x) \leq 1/t$. Note that both w_{t} and $1/w_{t}$ are in Muckenhoupt’s class A_{1}, since that class consists of all weights for which the average over each cube is dominated by a fixed multiple of the essential infimum over the same cube. For $1 < p < \infty$ we easily calculate

$$A_{p}(w_{t}) \leq \left(\frac{1}{t} \right)^{1/p} \left[\left(\frac{t}{t^{2} + 1} \right)^{-p'/p} \right]^{1/p'} = \left(\frac{t^{2} + 1}{t^{2}} \right)^{1/p}$$

and find exactly the same bound for $A_{p}(1/w_{t})$. Of course, these are only crude bounds; the theorem below shows that $A_{p}(w_{t})$ mimics the behavior of $A_{p}(w)$ for small t.

Theorem 1. For each a.e. positive locally integrable function w on \mathbb{R}^{n} and for $1 < p < \infty$, $A_{p}(w_{t}) \leq A_{p}(w)$ on $(0, \infty)$, with $A_{p}(w) = \lim_{t \to 0+} A_{p}(w_{t})$.

Proof. For $s, t \geq 0$ call $u(x) = s + w(x)$ and $v(x) = tu(x) + 1$, and then define

$$F(s, t) = \left(\int_{Q} \frac{u}{v} \right)^{p'-1} \int_{Q} \left(\frac{u}{v} \right)^{1-p'}$$

with Q a fixed but arbitrary cube in \mathbb{R}^{n}. We begin by showing that the partial derivatives $\frac{\partial F}{\partial s}(s, 0)$ and $\frac{\partial F}{\partial t}(s, t)$ are never positive. The bound for $\frac{\partial F}{\partial s}$ was done earlier by the authors in [1]; we reprove it here with a slightly different argument. Since

$$F(s, 0) = \left(\int_{Q} (s + w) \right)^{p'-1} \int_{Q} (s + w)^{1-p'},$$
for $s > 0$ we can differentiate with respect to s to find
\[
\frac{\partial F}{\partial s}(s, 0) = (p' - 1) \left(\int_Q (s + w) \right)^{p' - 2} |Q| \int_Q (s + w)^{1 - p'} + (1 - p') \left(\int_Q (s + w) \right)^{p' - 1} \int_Q (s + w)^{1 - p'}
\]
\[
= (p' - 1) \left(\int_Q u \right)^{p' - 2} \left[|Q| \int_Q u^{1 - p'} - \left(\int_Q u \right) \int_Q u^{-p'} \right].
\]

We use a simple corollary of Hölder’s inequality to show that this is never positive: for $u > 0$ and $0 \leq \theta \leq 1$ we have
\[
\left(\int u^a + b(1 - \theta) \right) \left(\int u^a + b(1 - \theta) \right) \leq \left(\int u^a \right) \left(\int u^b \right).
\]

Note $|Q| = \int_Q u^0$, and calling $\theta = 1/(p' + 1)$ lets us write
\[
0 = 1 - \theta - p'\theta \quad \text{and} \quad 1 - p' = \theta - p'(1 - \theta).
\]

Thus
\[
|Q| \int_Q u^{1 - p'} \leq \left(\int_Q u \right) \int_Q u^{-p'} < \infty,
\]
proving that $\frac{\partial F}{\partial s}(s, 0) \leq 0$ for each $s > 0$.

Obviously $\lim_{s \to 0} \int_Q (s + w) = \int_Q w$, and the monotone convergence theorem shows $\lim_{s \to 0} \int_Q (s + w)^{1 - p'} = \int_Q w^{1 - p'}$ whether this last quantity is finite or infinite, so we have established that $F(s, 0) \leq F(0, 0)$.

Next we fix $s > 0$ and differentiate with respect to t. Since
\[
\frac{\partial}{\partial t} \left(\frac{u}{v} \right) = \frac{\partial}{\partial t} \left(\frac{u}{tu + 1} \right) = -\frac{u^2}{v^2},
\]
we find
\[
\frac{\partial F}{\partial t}(s, t) = (p' - 1) \left(\int_Q \frac{u}{v} \right)^{p' - 2} \left[\left(\int_Q \frac{u}{v} \right) \int_Q \left(\frac{u}{v} \right)^{2 - p'} - \left(\int_Q \frac{u^2}{v^2} \right) \int_Q \left(\frac{u}{v} \right)^{1 - p'} \right].
\]

Again calling $\theta = 1/(p' + 1)$, we may write
\[
1 = 2(1 - \theta) + \theta (1 - p') \quad \text{and} \quad 2 - p' = 2\theta + (1 - \theta)(1 - p')
\]
and then show that $\frac{\partial F}{\partial t}(s, t) \leq 0$ as above; note all powers of u/v are locally integrable.

As for $F(s, t)$ itself, we have
\[
\lim_{t \to 0^+} \int_Q u/v = \int_Q u \quad \text{and} \quad \lim_{t \to 0^+} \int_Q (u/v)^{1 - p'} = \int_Q u^{1 - p'}
\]
by monotone convergence in the first case and by uniform convergence in the second, so that $\lim_{t \to 0^+} F(s, t) = F(s, 0) \leq F(0, 0)$. Hence we have $F(s, t) \leq F(0, 0)$ for all $s, t > 0$. In particular, this holds true for $s = t$, and after taking p' roots we obtain
\[
\left(\int_Q w^2 \right)^{1/p} \left(\int_Q \left(w^{1 - p'} \right)^{1/p'} \right) \leq \left(\int_Q w \right)^{1/p} \left(\int_Q \left(w^{1 - p'} \right)^{1/p'} \right).
\]
for all $t > 0$, all nonnegative locally integrable w, and all cubes Q in \mathbb{R}^n. Consequently, $A_p(w_t) \leq A_p(w)$ for each nonnegative locally integrable w on \mathbb{R}^n, and this is valid as long as $t > 0$ and $1 < p < \infty$.

We conclude the proof by appealing to Fatou’s lemma. Since $\int_Q w$ and $\int_Q w^{1-p'}$ are always positive or infinite, for each cube Q we have

$$
\frac{1}{|Q|} \left(\int_Q w \right)^{1/p} \left(\int_Q w^{1-p'} \right)^{1/p'} \leq \frac{1}{|Q|} \left(\liminf_{t \to 0+} \int_Q w_t \right)^{1/p} \left(\liminf_{t \to 0+} \int_Q w_t^{1-p'} \right)^{1/p'}
$$

$$
\leq \liminf_{t \to 0+} \frac{1}{|Q|} \left(\int_Q w_t \right)^{1/p} \left(\int_Q w_t^{1-p'} \right)^{1/p'}
$$

$$
\leq \liminf_{t \to 0+} A_p(w_t) \leq \limsup_{t \to 0+} A_p(w_t) \leq A_p(w).
$$

Taking the supremum over all cubes completes the proof.

3. Concluding remarks

Given any weight w that satisfies $A_{p_1}(w) > C_1$ and $A_{p_2}(w) \leq C_2$, for sufficiently small t the weight w_t will satisfy exactly the same inequalities, and w_t is in every A_p class. Consequently, no such system of inequalities can be used to show that the given weight w fails to belong to some weight class.

Our theorem fills a gap in some of the proofs that $\{p > 1 : w \in A_p\}$ is open. For example, the A_p condition and a Calderón-Zygmund covering argument can be used to show

$$
\int_Q w^{1-q} \leq C(p, q, A_p(w)) \int_Q w^{1-q} + |Q|^q (\int_Q w^{1-p'})^{(1-q)/p}
$$

for $1 < q < p$, with $C(p, q, A_p(w)) < 1$ when q is close enough to p. Then subtraction gives a bound for $\int_Q w^{1-q}$ that leads to a bound for $A_q(w)$ in terms of $A_p(w)$, but to justify the subtraction $\int_Q w^{1-q}$ needs to be finite. Such arguments are always valid when w is replaced by w_t, and then the bound for $A_q(w)$ in terms of $A_p(\omega)$ can be obtained by letting $t \to 0$.

References

Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
E-mail address: rbagby@nmsu.edu

Department of Mathematics, Mu’tah University, Mu’tah, Jordan
E-mail address: basmas_59@yahoo.com