ON THE BIEBERBACH CONJECTURE
AND HOLOMORPHIC DYNAMICS

XAVIER BUFF

(Communicated by Linda Keen)

Abstract. In this note we prove that when \(P \) is a polynomial of degree \(d \) with connected Julia set and when \(z_0 \) belongs to the filled-in Julia set \(K(P) \), then \(|P'(z_0)| \leq d^2 \). We also show that equality is achieved if and only if \(K(P) \) is a segment of which one extremity is \(z_0 \). In that case, \(P \) is conjugate to a Tchebycheff polynomial or its opposite. The main tool in our proof is the Bieberbach conjecture proved by de Branges in 1984.

1. Introduction

Let us first recall two well-known dynamical results which are in the same vein as ours.

Theorem 1. Let \(P \) be a monic centered polynomial with connected Julia set. Then, for any \(z_0 \in K(P) \), we have \(|z_0| \leq 2 \) with equality if and only if \(K(P) \) is a segment of which one extremity is \(z_0 \).

Proof. Assume \(K \) is a compact connected subset of \(\mathbb{C} \) and \(\mathbb{C} \setminus K \) is conformally isomorphic to \(\mathbb{C} \setminus \mathbb{D} \). Let \(\phi : \mathbb{C} \setminus \mathbb{D} \to \mathbb{C} \setminus K \) be a conformal isomorphism with Laurent series expansion

\[
\phi(z) = b_1 z + b_0 + \frac{b_{-1}}{z} + \frac{b_{-2}}{z^2} + \ldots .
\]

Then, the Gronwall Area Formula asserts that the area of \(K \) is equal to \(\pi \sum_{n \leq 1} n |b_n|^2 \). It follows that \(|b_1| \leq |b_{-1}| \), with equality if and only if \(K \) is a straight line segment. Moreover, when \(b_0 = 0 \) and \(z_0 \in K \), by considering the map \(\psi(w) = \sqrt{\phi(w^2)} - z_0 \), we get \(|z_0| \leq 2|b_1| \) with equality if and only if \(K \) is a straight line segment of which one extremity is \(z_0 \).

Then, observe that when \(P \) is a monic centered polynomial, the Böttcher coordinate \(\phi : \mathbb{C} \setminus \mathbb{D} \to \mathbb{C} \setminus K(P) \) has Laurent series expansion of the form

\[
\phi(z) = z + \frac{b_{-1}}{z} + \frac{b_{-2}}{z^2} + \ldots .
\]

Indeed, \(b_1 = 1 \) because \(P \) is monic and \(b_0 = 0 \) because \(P \) is centered. Theorem 1 follows immediately. \(\square \)

Received by the editors June 25, 2001 and, in revised form, August 14, 2001.
2000 Mathematics Subject Classification. Primary 37F10, 30C50.
Theorem 2. Let P be a polynomial of degree d with connected Julia set. If α is a fixed point of P, then $|P'(\alpha)| \leq d^2$.

This is a weak version of an inequality due to Pommerenke [Po], Levine [L] and Yoccoz [Y] (see [H] or [Pe]). The idea of the proof goes back to Bers’s Inequality in the context of quasi-fuchsian groups. There, Bers proves that the length of a hyperbolic geodesic in $Q(X,Y)$ is bounded by the hyperbolic length of the corresponding geodesic on X or Y (see [B] Theorem 3 and [McM] Prop. 6.4). In [O] Sect. 5.1, Otal gives a proof of Bers’s Inequality based on Koebe’s One-Quarter Theorem. His proof is inspired by Ahlfors (see [A] Lemma 1).

In the present article, we present a generalization of those two theorems. We will use the Bieberbach conjecture proved by de Branges in 1984.

De Branges’s Theorem. Let $\phi : \mathbb{D} \to \mathbb{C}$ be a univalent mapping. If $\phi(z) = \sum_{n \geq 1} a_n z^n$, then for any $n \geq 1$, we have $|a_n/a_1| \leq n$. Besides, if $|a_k/a_1| = k$ for some integer $k > 1$, then ϕ is a rotation of the Koebe function, i.e., there exists a real θ such that

$$\phi(z) = \frac{z}{(1 - e^{i\theta}z)^2}.$$

We obtain a result which does not only control the derivative of P at its fixed points, but controls the derivative of P at all the points in the Julia set. Our main observation is the following.

Lemma 1. Let $f : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ be a germ such that 0 is a superattracting fixed point with local degree $k \geq 2$. Let $\phi : (\mathbb{C}, 0) \to (\mathbb{C}, 0)$ be a Böttcher coordinate, i.e., a germ which is univalent in a neighborhood of 0 and which satisfies $\phi(z^k) = f(\phi(z))$ for z sufficiently close to 0. If $\phi(z) = \sum_{n \geq 1} a_n z^n$, then

$$\text{res} \left(\frac{1}{f}, 0 \right) = k \frac{a_k}{a_1}.$$

Remark. The result still holds if instead of germs one considers formal power series, but we are not aware of a formal proof.

We say that a polynomial P is a Tchebycheff polynomial if $P(\cos z) = \cos(d\zeta)$, where d is the degree of P. As a corollary of Lemma 1, we will show the following two theorems.

Theorem 3. Assume P is a polynomial of degree d with connected Julia set. Then, for any $z_0 \in K(P)$, we have $|P'(z_0)| \leq d^2$ with equality if and only if $K(P)$ is a segment, one extremity of which is z_0. In that case, P is conjugate to a Tchebycheff polynomial or to its opposite.

Theorem 4. Assume P is a polynomial of degree d with disconnected Julia set. Let $g_P : \mathbb{C} \to \mathbb{R}^+$ be the Green’s function of $K(P)$ and set

$$G(P) = \max_{\{\omega \mid P(\omega) = 0\}} g_P(\omega).$$

Then, for any $z_0 \in \mathbb{C}$ with $g_P(z_0) \leq G(P)$, we have $|P'(z_0)| < d^2 e^{(d-1)G(P)}$.

Remark. This inequality always holds for points in $K(P)$.
2. Proofs of the results

Proof of Lemma [4] Let \(\gamma_1 \) be a small circle around 0 and let \(\gamma_2 \) be its image by \(\phi \). Then,

\[
\text{res} \left(\frac{1}{f}, 0 \right) = \int_{\gamma_2} \frac{dw}{f(w)} \equiv \int_{\gamma_1} \frac{\phi'(z)}{\phi(z)^k} dz = \int_{\gamma_1} \frac{\phi'(z)}{\phi(z)^k} dz = \text{res} \left(\frac{\phi'(z)}{\phi(z)^k}, 0 \right).
\]

Since \(\phi(z) = \sum_{n \geq 1} a_n z^n \), we have

\[
\frac{\phi'(z)}{\phi(z)^k} = \frac{a_1 + 2a_2 z + \ldots + ka_k z^{k-1} + O(|z|^k)}{a_1 z^k (1 + O(|z|^k))} = \frac{1}{z^k} + \frac{2a_2}{a_1} \frac{1}{z^{k-1}} + \ldots + \frac{ka_k}{a_1} \frac{1}{z} + O(1).
\]

Therefore

\[
\text{res} \left(\frac{1}{f}, 0 \right) = \text{res} \left(\frac{\phi'(z)}{\phi(z)^k}, 0 \right) = \frac{ka_k}{a_1}.
\]

\(\blacksquare \)

Proof of Theorem [5] First, observe that when \(P \) is conjugate to a Tchebycheff polynomial of degree \(d \) (or its opposite), \(K(P) \) is a segment and the derivative at an extremity is \(\pm d^2 \). The proof is not difficult and left to the reader.

Next, assume \(P \) is a polynomial of degree \(d \) with connected Julia set and \(z_0 \) belongs to the filled-in Julia set \(K(P) \). Let \(\Omega \) be the simply connected sub-domain of \(\mathbb{P}^1 \) defined by

\[
\Omega = \left\{ w \in \mathbb{P}^1 \mid z_0 + \frac{1}{w} \in \mathbb{P}^1 \setminus K(P) \right\}.
\]

Since \(z_0 \in K(P) \), we see that \(\Omega \subset \mathbb{C} \), and since \(P \) has a superattracting fixed point with local degree \(d \) at infinity, the rational map \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) defined by

\[
f(w) = \frac{1}{P(z_0 + 1/w) - z_0}
\]

has a superattracting fixed point at 0 with local degree \(d \). Any Böttcher coordinate of \(f \) extends to a univalent mapping \(\phi : \mathbb{D} \to \Omega \) and Lemma [4] asserts that writing \(\phi(z) = \sum_{n \geq 1} a_n z^n \), we get

\[
d \frac{a_d}{a_1} = \text{res} \left(\frac{1}{f}, 0 \right).
\]

Since \(P(z) = b_0 + b_1(z - z_0) + \ldots + b_d(z - z_0)^d \), we see that

\[
\frac{1}{f(w)} = P(z_0 + 1/w) - z_0 = b_0 - z_0 + \frac{b_1}{w} + \ldots + \frac{b_d}{w^d}.
\]

Therefore, \(\text{res} \left(1/f, 0 \right) = b_1 = P'(z_0) \). It now follows from de Branges’s Theorem that

\[
|P'(z_0)| = \left| d \frac{a_d}{a_1} \right| \leq d^2,
\]

with equality if and only if \(\phi \) is a rotation of the Koebe function. In that case, \(\Omega \) is a slit plane, and thus \(K(P) \) is a segment of which one extremity is \(z_0 \).

We must now show that \(P \) is conjugate to a Tchebycheff polynomial or to its opposite. Knowing that \(K(P) \) is a segment, this is classical. Conjugating \(P \) with an affine map, we may assume that \(K(P) = [-1, 1] \). We define \(\psi : \mathbb{P}^1 \setminus \mathbb{D} \to \mathbb{P}^1 \setminus [-1, 1] \) to be the conformal representation

\[
\psi(z) = \frac{1}{2} \left(z + \frac{1}{z} \right).
\]
The conformal representation \(\psi^{-1} : \mathbb{P}^1 \setminus [-1, 1] \rightarrow \mathbb{P}^1 \setminus \overline{\mathbb{D}} \) conjugates the proper mapping \(P : \mathbb{P}^1 \setminus [-1, 1] \rightarrow \mathbb{P}^1 \setminus [-1, 1] \) to a proper mapping from \(\mathbb{P}^1 \setminus \overline{\mathbb{D}} \) to itself, having a superattracting fixed point of degree \(d \) at infinity. This mapping is necessarily of the form \(z \mapsto \lambda z^d \), with \(|\lambda| = 1 \).

Since \(K(P) \) is totally invariant, the polynomial \(P \) necessarily maps the set \(\{-1, 1\} \) into itself. Besides, \(\psi^{-1}(z) \) tends to \(\pm 1 \) as \(z \) tends to \(\pm 1 \). Therefore, the map \(z \mapsto \lambda z^d \) maps the set \(\{-1, 1\} \) into itself. This shows that \(\lambda = \pm 1 \). Hence, \(P \) is conjugate to a Tchebycheff polynomial.

As \(z \rightarrow e^{i\theta} \in S^1 \), we get
\[
P(\cos \theta) = P \left(\frac{e^{i\theta} + e^{-i\theta}}{2} \right) = \pm \frac{e^{i\theta} + e^{-i\theta}}{2} = \pm \cos(d\theta).
\]

\(\square \)

Proof of Theorem 4. We will mimic the previous proof. We assume that \(g_P(z_0) \leq G(P) \) and we set
\[
\Omega = \left\{ w \in \mathbb{P}^1 \mid g_P \left(z_0 + \frac{1}{w} \right) > G(P) \right\}.
\]
We define \(f : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \) by \(f(w) = 1/(P(z_0 + 1/w) - z_0) \). Then the Böttcher coordinate of \(f \) at 0 extends to a univalent mapping \(\phi \) between the disk centered at 0 with radius \(e^{-G(P)} \) and the domain \(\Omega \subset \mathbb{C} \). Since the mapping
\[
z \mapsto \phi(e^{-G(P)} z) = \sum_{n \geq 1} a_n e^{-nG(P)} z^n
\]
is univalent in the unit disk, de Branges’s Theorem only allows us to conclude that
\[
|P'(z_0)| = \left| \frac{a_d}{a_1} \right| = de^{(d-1)G(P)} \left| \frac{a_d e^{-dG(P)}}{a_1 e^{-G(P)}} \right| < d^2 e^{(d-1)G(P)}.
\]
The inequality is strict because the complement of \(\Omega \) has non-empty interior, and therefore, \(\Omega \) cannot be a slit plane.

\(\square \)

3. Application

A possible application of Theorem 3 is the following.

Corollary 1. Let \(d \geq 3 \) be an integer, and \(a = (a_2, \ldots, a_d) \) be a point in \(\mathbb{C}^{d-2} \). Then, the Julia set of the polynomial \(P_a(z) = d^2 z + a_2 z^2 + \ldots + a_d z^d + 1 \) is connected if and only if \(P_a \) is conjugate to a Tchebycheff polynomial.

Proof. On the one hand, if \(P_a \) is conjugate to a Tchebycheff polynomial, its Julia set is a segment and therefore it is connected. On the other hand, observe that 0 is a fixed point with multiplier \(d^2 \). Therefore, Theorem 3 shows that if \(J(P_a) \) is connected, then \(P_a \) is conjugate to a Tchebycheff polynomial or its opposite and 0 is an extremity of \(K(P_a) \). Since 0 is fixed, \(P_a \) may always be conjugate to a Tchebycheff polynomial.

Every polynomial of degree \(d \) having a fixed point with multiplier \(d^2 \) is conjugate to a polynomial \(P_a \). The family \((P_a)_{a \in \mathbb{C}^{d-2}} \) is a co-dimension 1 algebraic sub-variety of the space of polynomials up to conjugacy. The set of polynomials \(P_a \) which are conjugate to a Tchebycheff polynomial is finite but not empty. Therefore, for
each degree \(d \geq 3 \), we produce an example of co-dimension 1 algebraic family of polynomials for which the connectivity locus is non-empty and discrete.

Acknowledgements

The author wishes to express his gratitude to Gilbert Levitt and Jean-Pierre Ramis for fruitful discussions.

References

Laboratoire Emile Picard, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France

E-mail address: buff@picard.ups-tlse.fr