Equivalent quasi-norms on Lorentz spaces

Authors:
David E. Edmunds and Bohumír Opic

Journal:
Proc. Amer. Math. Soc. **131** (2003), 745-754

MSC (2000):
Primary 46E30, 26D10, 47B38, 47G10

Published electronically:
October 15, 2002

MathSciNet review:
1937412

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give new characterizations of Lorentz spaces by means of certain quasi-norms which are shown to be equivalent to the classical ones.

**[AH]**David R. Adams and Lars Inge Hedberg,*Function spaces and potential theory*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR**1411441****[BR]**Colin Bennett and Karl Rudnick,*On Lorentz-Zygmund spaces*, Dissertationes Math. (Rozprawy Mat.)**175**(1980), 67. MR**576995****[BS]**Colin Bennett and Robert Sharpley,*Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR**928802****[C]**A.-P. Calderón,*Spaces between 𝐿¹ and 𝐿^{∞} and the theorem of Marcinkiewicz*, Studia Math.**26**(1966), 273–299. MR**0203444****[CKOP]**A. Cianchi, R. Kerman, B. Opic, and L. Pick,*A sharp rearrangement inequality for the fractional maximal operator*, Studia Math.**138**(2000), no. 3, 277–284. MR**1758860****[EGO]**David E. Edmunds, Petr Gurka, and Bohumír Opic,*Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces*, Indiana Univ. Math. J.**44**(1995), no. 1, 19–43. MR**1336431**, 10.1512/iumj.1995.44.1977**[EO]**D. E. Edmunds and B. Opic,*Boundedness of fractional maximal operators between classical and weak-type Lorentz spaces*, Research Report No: 2000-15, CMAIA, University of Sussex at Brighton, 2000, 40 pp. (to appear in Dissert. Math. (2000)).**[La]**Shanzhong Lai,*Weighted norm inequalities for general operators on monotone functions*, Trans. Amer. Math. Soc.**340**(1993), no. 2, 811–836. MR**1132877**, 10.1090/S0002-9947-1993-1132877-X**[Lo1]**G. G. Lorentz,*Some new functional spaces*, Ann. of Math. (2)**51**(1950), 37–55. MR**0033449****[Lo2]**G. G. Lorentz,*On the theory of spaces Λ*, Pacific J. Math.**1**(1951), 411–429. MR**0044740****[MW]**Benjamin Muckenhoupt and Richard Wheeden,*Weighted norm inequalities for fractional integrals*, Trans. Amer. Math. Soc.**192**(1974), 261–274. MR**0340523**, 10.1090/S0002-9947-1974-0340523-6**[O]**B. Opic,*New characterizations of Lorentz spaces*(to appear in Proc. Royal Soc. Edinburgh, Section A).**[OK]**B. Opic and A. Kufner,*Hardy-type inequalities*, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR**1069756****[OP]**B. Opic and L. Pick,*On generalized Lorentz-Zygmund spaces*, Math. Inequal. Appl.**2**(1999), no. 3, 391–467. MR**1698383**, 10.7153/mia-02-35**[S]**E. Sawyer,*Boundedness of classical operators on classical Lorentz spaces*, Studia Math.**96**(1990), no. 2, 145–158. MR**1052631**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46E30,
26D10,
47B38,
47G10

Retrieve articles in all journals with MSC (2000): 46E30, 26D10, 47B38, 47G10

Additional Information

**David E. Edmunds**

Affiliation:
Centre for Mathematical Analysis and Its Applications, University of Sussex, Falmer, Brighton BN1 9QH, England

Email:
d.e.edmunds@sussex.ac.uk

**Bohumír Opic**

Affiliation:
Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Email:
opic@math.cas.cz

DOI:
https://doi.org/10.1090/S0002-9939-02-06870-3

Keywords:
Lorentz spaces,
equivalent quasi-norms,
weighted norm inequalities,
fractional maximal operators,
Riesz potentials,
Hilbert transform

Received by editor(s):
July 1, 2001

Published electronically:
October 15, 2002

Additional Notes:
This research was supported by NATO Collaborative Research Grant PST.CLG 970071 and by grant no.201/01/0333 of the Grant Agency of the Czech Republic

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2002
American Mathematical Society