A CORRECTION TO
“ULTRADIFFERENTIABLE FUNCTIONS ON LINES IN \mathbb{R}^n”

TEJINDER NEELON

(Communicated by Christopher D. Sogge)

ABSTRACT. The proof of Theorem 1 in Proc. Amer. Math. Soc. 127 (1999), no. 7, 2099–2104, is revised.

The proof of Theorem 1 in [1] uses Lemma 3(ii) which turns out to be valid only for the case $n = 2$. In this note the proof of Theorem 1 is revised by replacing Lemma 3(ii) by the proposition stated below.

For $x \in \mathbb{R}^n$, $0 \neq \xi \in S^{n-1}$, let $H_{x\xi}$ denote the hyperplane in \mathbb{R}^n that passes through x with ξ as its normal vector. If $\varphi : \mathbb{R}^{n-1} \to \mathbb{R}^n$ is a linear map such that $H_{x\xi} = \varphi(\mathbb{R}^{n-1})$, then the restriction of a function $u \in C^\infty(\mathbb{R}^n)$ to $H_{x\xi}$ is defined by $u_{x\xi}(t) = u(x + \varphi(t))$, $t \in \mathbb{R}^{n-1}$.

Proposition. For any $u \in C^\infty(\mathbb{R}^n)$, the following inequality holds:

$$\max_{|\alpha|=k} |\partial^n u(x)| \leq \max_{\beta \in \mathbb{Z}^n, |\beta|=k} |\partial^\beta (u_{x\xi})(0)|, \forall k \geq 0. \tag{0.1}$$

Proof. Conforming to the notation in [1], let $a_1, \varepsilon \in \mathbb{R}$, $\varepsilon > 0$, $x \in \mathbb{R}^n$, $k \in \mathbb{Z}$, $k \geq 0$, and $(\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbb{Z}^n_+$, $|\alpha| = k$, be fixed. Put $a_{1j} = a_1 + \frac{\varepsilon}{j}$, $j = 0, \ldots, k$. Consider the hyperplanes given by the images of the linear maps

$$\varphi_j : \mathbb{R}^{n-1} \to \mathbb{R}^n, \quad \varphi_j(t_2, ..., t_n) = (x_1 + a_{1j}t_2, x_2 + t_2, ..., x_n + t_n), \forall j, 0 \leq j \leq k.$$

Then,

$$\partial_{a_1+\varepsilon}^{\alpha_1} \partial_{a_2}^{\alpha_2} (u \circ \varphi_j)(0) = \sum_{l=0}^{\alpha_1+\alpha_2} a_{1j}^\alpha \left(\partial_l^{\alpha_1} \partial_2^{\alpha_2} u \right)(x),$$

where $\partial^\alpha = \partial_{a_3}^{\alpha_3} \cdots \partial_n^{\alpha_n}$. By applying Lemma 3(i), we have for $\varepsilon = 8e^3$ and $l = \alpha_1$,

$$|\partial^n u(x)| \leq \max_{|\beta|=|\alpha|} \max_{0 \leq r \leq k} |\partial^\beta (u \circ \varphi_r)(0)|.$$

\square

Let V be an n-dimensional vector space. By using a linear isomorphism between V and \mathbb{R}^n, the classes $C^\infty(V)$ and $C^M(V)$ can be identified with $C^\infty(\mathbb{R}^n)$ and

Received by the editors June 20, 2002.

2000 Mathematics Subject Classification. Primary 30D60, 46F05.

Key words and phrases. Ultradifferentiable functions, transfinite diameter.
$C^M(\mathbb{R}^n)$, respectively. When $n = 2$, the inequality (0.1) reduces to the last inequality in the proof of Theorem 1. In particular, the conclusion of Theorem 1 is valid for any 2-dimensional vector space V. Hence, by the above proposition and by induction on n, we see that Theorem 1 holds for all n.

Reference

Department of Mathematics, 333 S. Twin Oaks Valley Road, California State University, San Marcos, California 92096

E-mail address: neelon@csusm.edu