Reduction numbers and initial ideals
Author:
Aldo Conca
Journal:
Proc. Amer. Math. Soc. 131 (2003), 10151020
MSC (2000):
Primary 13P10, 13A30; Secondary 13F20
Published electronically:
June 12, 2002
MathSciNet review:
1948090
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The reduction number of a standard graded algebra is the least integer such that there exists a minimal reduction of the homogeneous maximal ideal of such that . Vasconcelos conjectured that where is the initial ideal of an ideal in a polynomial ring with respect to a term order. The goal of this note is to prove the conjecture.
 1.
Anna
Maria Bigatti, Upper bounds for the Betti numbers of a given
Hilbert function, Comm. Algebra 21 (1993),
no. 7, 2317–2334. MR 1218500
(94c:13014), http://dx.doi.org/10.1080/00927879308824679
 2.
Henrik
Bresinsky and Lê
Tuân Hoa, On the reduction number of some graded
algebras, Proc. Amer. Math. Soc.
127 (1999), no. 5,
1257–1263. MR 1473657
(99h:13027), http://dx.doi.org/10.1090/S0002993999046225
 3.
A. Capani, G. Niesi, L. Robbiano, CoCoA, a system for doing Computations in Commutative Algebra, Available ftp from cocoa.dima.unige.it.
 4.
Heather
A. Hulett, Maximum Betti numbers of homogeneous ideals with a given
Hilbert function, Comm. Algebra 21 (1993),
no. 7, 2335–2350. MR 1218501
(94c:13015), http://dx.doi.org/10.1080/00927879308824680
 5.
Srikanth
Iyengar and Keith
Pardue, Maximal minimal resolutions, J. Reine Angew. Math.
512 (1999), 27–48. MR 1703076
(2000d:13023), http://dx.doi.org/10.1515/crll.1999.055
 6.
Keith
Pardue, Deformation classes of graded modules and maximal Betti
numbers, Illinois J. Math. 40 (1996), no. 4,
564–585. MR 1415019
(97g:13029)
 7.
E. Sbarra, Upper bounds for local cohomology for rings with given Hilbert function, Comm. Algebra 29 (2001), 53835409.
 8.
Ngô
Viêt Trung, Gröbner bases, local cohomology
and reduction number, Proc. Amer. Math.
Soc. 129 (2001), no. 1, 9–18. MR 1695103
(2001c:13042), http://dx.doi.org/10.1090/S0002993900055039
 9.
N. Trung, Constructive characterization of the reduction numbers, preprint 2001.
 10.
Wolmer
V. Vasconcelos, Cohomological degrees of graded modules, Six
lectures on commutative algebra (Bellaterra, 1996) Progr. Math.,
vol. 166, Birkhäuser, Basel, 1998, pp. 345–392. MR 1648669
(99j:13012)
 1.
 A. Bigatti, Upper bounds for the Betti numbers of a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 23172334. MR 94c:13014
 2.
 H. Bresinsky, L. Hoa, On the reduction number of some graded algebras, Proc. Amer. Math. Soc. 127 (1999), no. 5, 12571263. MR 99h:13027
 3.
 A. Capani, G. Niesi, L. Robbiano, CoCoA, a system for doing Computations in Commutative Algebra, Available ftp from cocoa.dima.unige.it.
 4.
 H. Hulett, Maximum Betti numbers of homogeneous ideals with a given Hilbert function, Comm. Algebra 21 (1993), no. 7, 23352350. MR 94c:13015
 5.
 S. Iyengar, K. Pardue, Maximal minimal resolutions, J. Reine Angew. Math. 512 (1999), 2748. MR 2000d:13023
 6.
 K. Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J. Math. 40 (1996), no. 4, 564585. MR 97g:13029
 7.
 E. Sbarra, Upper bounds for local cohomology for rings with given Hilbert function, Comm. Algebra 29 (2001), 53835409.
 8.
 N. Trung, Gröbner bases, local cohomology and reduction number, Proc. Amer. Math. Soc. 129 (2001), no. 1, 918. MR 2001c:13042
 9.
 N. Trung, Constructive characterization of the reduction numbers, preprint 2001.
 10.
 W. Vasconcelos, Cohomological degrees of graded modules, in Six lectures on commutative algebra (Bellaterra, 1996), 345392, Progr. Math., 166, Birkhäuser, Basel, 1998. MR 99j:13012
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13P10,
13A30,
13F20
Retrieve articles in all journals
with MSC (2000):
13P10,
13A30,
13F20
Additional Information
Aldo Conca
Affiliation:
Dipartimento di Matematica, Universitá di Genova, Via Dodecaneso 35, I16146 Genova, Italia
Email:
conca@dima.unige.it
DOI:
http://dx.doi.org/10.1090/S0002993902066078
PII:
S 00029939(02)066078
Keywords:
Gr\"obner bases,
initial ideal,
reduction number,
Lexsegment ideal
Received by editor(s):
September 24, 2001
Received by editor(s) in revised form:
October 29, 2001
Published electronically:
June 12, 2002
Communicated by:
Wolmer V. Vasconcelos
Article copyright:
© Copyright 2002
American Mathematical Society
