Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On functions whose graph is a Hamel basis


Author: Krzysztof Plotka
Journal: Proc. Amer. Math. Soc. 131 (2003), 1031-1041
MSC (2000): Primary 15A03, 54C40; Secondary 26A21, 54C30
DOI: https://doi.org/10.1090/S0002-9939-02-06620-0
Published electronically: August 28, 2002
MathSciNet review: 1948092
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We say that a function $h \colon \mathbb{R}\to \mathbb{R} $ is a Hamel function ( $h \in {\rm HF}$) if $h$, considered as a subset of $\mathbb{R} ^2$, is a Hamel basis for $\mathbb{R} ^2$. We prove that every function from $\mathbb{R} $ into $\mathbb{R} $ can be represented as a pointwise sum of two Hamel functions. The latter is equivalent to the statement: for all $f_1,f_2 \in \mathbb{R} ^{\mathbb{R} }$ there is a $g\in\mathbb{R} ^{\mathbb{R} }$ such that $g+f_1,g+f_2\in \mathrm{HF}$. We show that this fails for infinitely many functions.


References [Enhancements On Off] (What's this?)

  • 1. A.L Cauchy, Cours d'analyse de l'Ecole Polytechnique, 1. Analyse algébrique, V., Paris, 1821 [Oeuvres (2) 3, Paris, 1897]. MR 95a:01026
  • 2. K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts 39, Cambridge Univ. Press 1997. MR 99c:04001
  • 3. K. Ciesielski, J. Jastrzebski, Darboux-like functions within the classes of Baire one, Baire two, and additive functions, Topology Appl. 103 (2000), 203-219. MR 2001g:26001
  • 4. K. Ciesielski, T. Natkaniec, Algebraic properties of the class of Sierpinski-Zygmund functions, Topology Appl. 79 (1997), 75-99. MR 99c:04003
  • 5. K. Ciesielski, I. Rec\law, Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange 21 (1995-96), 459-472. MR 97f:26003
  • 6. G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung $f(x+y)=f(x)+f(y)$, Math. Ann. 60 (1905), 459-462.
  • 7. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1941. MR 3:312b
  • 8. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers, PWN, Warszawa, 1985. MR 86i:39008
  • 9. C. Kuratowski, Topologie I, Warszawa 1958. MR 19:873d
  • 10. T. Natkaniec, Almost Continuity, Real Anal. Exchange 17 (1991-92), 462-520. MR 93e:54009
  • 11. J.C. Oxtoby, Measure and Category, Springer-Verlag, Amsterdam 1971. MR 52:14213
  • 12. K. P\lotka, Sum of Sierpinski-Zygmund and Darboux Like functions, Topology Appl. 122/3 (2002), 547-564.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 15A03, 54C40, 26A21, 54C30

Retrieve articles in all journals with MSC (2000): 15A03, 54C40, 26A21, 54C30


Additional Information

Krzysztof Plotka
Affiliation: Department of Mathematics, University of Scranton, Scranton, Pennsylvania 18510
Email: plotkak2@scranton.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06620-0
Keywords: Hamel basis, additive functions, Hamel functions.
Received by editor(s): September 13, 2001
Received by editor(s) in revised form: November 2, 2001
Published electronically: August 28, 2002
Additional Notes: Most of this work was done when the author was working on his Ph.D. at West Virginia University. The author wishes to thank his advisor, Professor K. Ciesielski, for many helpful conversations.
Communicated by: Alan Dow
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society