Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On a theorem of R. Steinberg on rings of coinvariants
HTML articles powered by AMS MathViewer

by Larry Smith PDF
Proc. Amer. Math. Soc. 131 (2003), 1043-1048 Request permission

Abstract:

Let $\rho : G\hookrightarrow \mathrm {GL}(n,\mathbb {F})$ be a representation of a finite group $G$ over the field $\mathbb {F}$. Denote by $\mathbb {F}[V]$ the algebra of polynomial functions on the vector space $V=\mathbb {F}^n$. The group $G$ acts on $V$ and hence also on $\mathbb {F}[V]$. The algebra of coinvariants is $\mathbb {F}[V]_G=\mathbb {F}[V]/\mathfrak {h}(G)$, where $\mathfrak {h}(G) \subset \mathbb {F}[V]$ is the ideal generated by all the homogeneous $G$-invariant forms of strictly positive degree. If the field $\mathbb {F}$ has characteristic zero, then R. Steinberg has shown (this is the formulation of R. Kane) that $\mathbb {F}[V]_G$ is a Poincaré duality algebra if and only if $G$ is a pseudoreflection group. In this note we explore the situation for fields of nonzero characteristic. We prove an analogue of Steinberg’s theorem for the case $n=2$ and give a counterexample in the modular case when $n=4$.
References
  • D. Hilbert, “Uber die Theorie der Algebraischen Formen, Math. Annalen 36 (1890), 473–534.
  • Richard Kane, Poincaré duality and the ring of coinvariants, Canad. Math. Bull. 37 (1994), no. 1, 82–88. MR 1261561, DOI 10.4153/CMB-1994-012-3
  • T.-C. Lin, Poincarédualität und Ringen von Koinvarianten, Universität Göttingen, Doktorarbeit, (to appear).
  • D. M. Meyer and L. Smith, Poincaré Duality Algebras, Macaulay’s Dual Systems and Steenrod Operations, AG-Invariantentheorie, (to appear).
  • M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2002.
  • H. Seifert and W. Threlfall, Lehrbuch der Topologie, Chelsea Publ. Co., New York, NY, 1947.
  • J. P. Serre, Sur les Modules Projectifs, Sem. P. Dubriel, M.L. Dubriel-Jacotin et C. Pisot, 14ème anné (1960/61), ENS Paris, 1961.
  • Jean-Pierre Serre, Groupes finis d’automorphismes d’anneaux locaux réguliers, Colloque d’Algèbre (Paris, 1967) Secrétariat mathématique, Paris, 1968, pp. 11 (French). MR 0234953
  • Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
  • Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644
  • Peter Scherk, Bemerkungen zu einer Note von Besicovitch, J. London Math. Soc. 14 (1939), 185–192 (German). MR 29, DOI 10.1112/jlms/s1-14.3.185
  • Wolmer V. Vasconcelos, Ideals generated by $R$-sequences, J. Algebra 6 (1967), 309–316. MR 213345, DOI 10.1016/0021-8693(67)90086-5
  • Antoni Zygmund, Sur un théorèm de M. Fejér, Bull. Sém. Math. Univ. Wilno 2 (1939), 3–12 (French). MR 52
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13A50, 20F55
  • Retrieve articles in all journals with MSC (1991): 13A50, 20F55
Additional Information
  • Larry Smith
  • Affiliation: AG-Invariantentheorie, Mathematisches Institut der Universität, Bunsenstraße 3-5, D37073 Göttingen, Federal Republic of Germany
  • Email: larry@sunrise.uni-math.gwdg.de
  • Received by editor(s): April 30, 2001
  • Received by editor(s) in revised form: November 5, 2001
  • Published electronically: July 26, 2002
  • Communicated by: Wolmer V. Vasconcelos
  • © Copyright 2002 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 131 (2003), 1043-1048
  • MSC (1991): Primary 13A50; Secondary 20F55
  • DOI: https://doi.org/10.1090/S0002-9939-02-06629-7
  • MathSciNet review: 1948093