Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pseudocompact topological group refinements of maximal weight


Authors: W. W. Comfort and Jorge Galindo
Journal: Proc. Amer. Math. Soc. 131 (2003), 1311-1320
MSC (2000): Primary 22A05, 54H11
DOI: https://doi.org/10.1090/S0002-9939-02-06650-9
Published electronically: September 5, 2002
MathSciNet review: 1948125
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that a compact metrizable group admits no proper pseudocompact topological group refinement. The authors show, in contrast, that every (Hausdorff) pseudocompact Abelian group $G=(G,{\mathcal T})$ of uncountable weight $\alpha$, satisfying any of the following conditions, admits a pseudocompact group refinement of maximal weight (that is, of weight $2^{\vert G\vert}$):

(i)
$G$ is compact;
(ii)
$G$ is torsion-free with $\alpha\leq\vert G\vert=\vert G\vert^\omega$;
(iii)
[GCH] $G$ is torsion-free.

Remark. (i) answers a question posed by Comfort and Remus [Math. Zeit- schrift 215 (1994), 337-346].


References [Enhancements On Off] (What's this?)

  • 1. F. S. Cater, Paul Erdos, and Fred Galvin, On the density of $\lambda$-box products, General Topology and Its Applications 9 (1978), 307-312. MR 80e:54004
  • 2. W. W. Comfort and Jorge Galindo, Extremal pseudocompact topological groups (title tentative) (2000). Manuscript in preparation.
  • 3. W. W. Comfort and Dieter Remus, Imposing pseudocompact group topologies on Abelian groups, Fundamenta Math. 142 (1993), 221-240. MR 94g:22006
  • 4. W. W. Comfort and Dieter Remus, Abelian torsion groups with a pseudocompact group topology, Forum Mathematicum 6 (1994), 323-337. MR 95d:20096
  • 5. W. W. Comfort and Dieter Remus, Pseudocompact refinements of compact group topologies, Math. Zeitschrift 215 (1994), 337-346. MR 95f:54035
  • 6. W. W. Comfort and Lewis C. Robertson, Proper pseudocompact extensions of compact Abelian group topologies, Proc. Amer. Math. Soc. 86 (1982), 173-178. MR 83k:22011
  • 7. W. W. Comfort and Lewis C. Robertson, Cardinality constraints for pseudocompact and for totally dense subgroups of compact Abelian groups, Pacific J. Math. 119 (1985), 265-285. MR 87i:22002
  • 8. W. W. Comfort and Lewis C. Robertson, Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 48 pages, Rozprawy Mat. Polish Scientific Publishers, Warszawa. MR 89i:22001
  • 9. W. W. Comfort and Kenneth A. Ross, Topologies induced by groups of characters, Fundamenta Math. 55 (1964), 283-291. MR 30:183
  • 10. W. W. Comfort and Kenneth A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. MR 34:7699
  • 11. W. W. Comfort and Jan van Mill, Concerning connected, pseudocompact Abelian groups, Topology and Its Applications 33 (1989), 21-45. MR 90k:54002
  • 12. D. N. Dikranjan and D. B. Shakhmatov, Pseudocompact topologizations of groups, Zbornik radova Filozofskog fakulteta u Nisu Serija Matematika 4 (1990), 83-93. MR 92k:54043
  • 13. D. N. Dikranjan and D. B. Shakhmatov, Algebraic structure of the pseudocompact groups, 1991, Report 91-19, pp. 1-37. York University, Ontario, Canada.
  • 14. Dikran N. Dikranjan and Dmitri B. Shakhmatov, Algebraic structure of pseudocompact groups, Memoirs Amer. Math. Soc. 133, ix + 83 pages, 1998. MR 98j:22001
  • 15. E. K. van Douwen, The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality, Proc. Amer. Math. Soc. 80 (1980), 678-682. MR 82a:54009
  • 16. László Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York-San Francisco-London, 1970. MR 41:333
  • 17. Jorge Galindo, Dense pseudocompact subgroups and finer pseudocompact group topologies, Sci. Math. Japan 55 (2001), 627-640.
  • 18. Edwin Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64 (1948), 45-99. MR 10:126e
  • 19. Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, volume I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, volume 115, Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 28:158
  • 20. Edwin Hewitt and Kenneth A. Ross, Extensions of Haar measure and of harmonic analysis for locally compact Abelian groups, Math. Annalen 160 (1965), 171-194. MR 32:4208
  • 21. J. Mycielski, Some properties of connected compact groups, Colloq. Math. 5 (1958), 51-79. MR 20:6479
  • 22. André Weil, Sur les Espaces à Structure Uniforme et sur la Topologie Générale, Publ. Math. Univ. Strasbourg, vol. 551, Hermann and Cie, Paris, 1938.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 22A05, 54H11

Retrieve articles in all journals with MSC (2000): 22A05, 54H11


Additional Information

W. W. Comfort
Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
Email: wcomfort@wesleyan.edu

Jorge Galindo
Affiliation: Departamento de Matemáticas, Universitat Jaume I, 8029-AP Castellón, Spain
Email: jgalindo@mat.uji.es

DOI: https://doi.org/10.1090/S0002-9939-02-06650-9
Keywords: Topological group, pseudocompact, refinement topology, maximal weight
Received by editor(s): August 21, 2000
Received by editor(s) in revised form: December 4, 2001
Published electronically: September 5, 2002
Additional Notes: This paper is based on work completed during the visit of the second-listed author to the Department of Mathematics of Wesleyan University, during the Fall Term of the academic year 1998-1999
The work of the second author was supported in part by Spanish DGES, grant number BFM 2000-0913. The second author acknowledges with thanks hospitality and support received from the Department of Mathematics of Wesleyan University
Communicated by: Alan Dow
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society