Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Borel subrings of the reals

Authors: G. A. Edgar and Chris Miller
Journal: Proc. Amer. Math. Soc. 131 (2003), 1121-1129
MSC (2000): Primary 28A78; Secondary 03E15, 11K55, 12D99, 28A05
Published electronically: June 12, 2002
MathSciNet review: 1948103
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Borel (or even analytic) subring of $\mathbb R$ either has Hausdorff dimension $0$ or is all of $\mathbb R$. Extensions of the method of proof yield (among other things) that any analytic subring of $\mathbb C$ having positive Hausdorff dimension is equal to either $\mathbb R$ or $\mathbb C$.

References [Enhancements On Off] (What's this?)

  • 1. Charalambos D. Aliprantis and Owen Burkinshaw, Principles of real analysis, North-Holland Publishing Co., New York-Amsterdam, 1981. MR 607327
  • 2. Stefan Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR 1357166
  • 3. Donald L. Cohn, Measure theory, Birkhäuser, Boston, Mass., 1980. MR 578344
  • 4. R. O. Davies, Subsets of finite measure in analytic sets, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 488–489. MR 0053184
  • 5. Gerald A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998. MR 1484412
  • 6. G. Edgar and C. Miller, Hausdorff dimension, analytic sets and transcendence, Real Anal. Exchange, 27 (2001/02), 335-339.
  • 7. Paul Erdős and Bodo Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221 (1966), 203–208 (German). MR 0186782
  • 8. K. J. Falconer, Rings of fractional dimension, Mathematika 31 (1984), no. 1, 25–27. MR 762173, 10.1112/S0025579300010615
  • 9. K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206–212 (1986). MR 834490, 10.1112/S0025579300010998
  • 10. Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
  • 11. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
  • 12. F. Topsøe and J. Hoffmann-Jørgensen, Analytic spaces and their application, Analytic Sets, Academic Press, London, 1980, pp. 317-401.
  • 13. J. D. Howroyd, On dimension and on the existence of sets of finite positive Hausdorff measure, Proc. London Math. Soc. (3) 70 (1995), no. 3, 581–604. MR 1317515, 10.1112/plms/s3-70.3.581
  • 14. Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
  • 15. Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
  • 16. Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International, Belmont, Calif., 1981. Wadsworth International Mathematics Series. MR 604364
  • 17. Bodo Volkmann, Eine metrische Eigenshaft reeller Zahlkörper, Math. Ann. 141 (1960), 237–238 (German). MR 0117316
  • 18. Helmut Wegmann, Die Hausdorff-Dimension von kartesischen Produkten metrischer Räume, J. Reine Angew. Math. 246 (1971), 46–75 (German). MR 0273585
  • 19. André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 28A78, 03E15, 11K55, 12D99, 28A05

Retrieve articles in all journals with MSC (2000): 28A78, 03E15, 11K55, 12D99, 28A05

Additional Information

G. A. Edgar
Affiliation: Department of Mathematics, The Ohio State University, 231 West Eighteenth Avenue, Columbus, Ohio 43210

Chris Miller
Affiliation: Department of Mathematics, The Ohio State University, 231 West Eighteenth Avenue, Columbus, Ohio 43210

Keywords: Borel subring, Borel subfield, Hausdorff dimension, Erd\H{o}s, Volkmann, Suslin sets, analytic sets
Received by editor(s): October 29, 2001
Published electronically: June 12, 2002
Additional Notes: Research of the second author was supported by NSF grant no. DMS-9988855
Communicated by: David Preiss
Article copyright: © Copyright 2002 American Mathematical Society