Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Random walks on abelian-by-cyclic groups

Authors: Christophe Pittet and Laurent Saloff-Coste
Journal: Proc. Amer. Math. Soc. 131 (2003), 1071-1079
MSC (2000): Primary 20F69, 82B41, 60B99, 20F16
Published electronically: September 5, 2002
MathSciNet review: 1948097
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the large time asymptotic behaviors of the probabilities $p_{2t}(e,e)$ of return to the origin associated to finite symmetric generating sets of abelian-by-cyclic groups. We characterize the different asymptotic behaviors by simple algebraic properties of the groups.

References [Enhancements On Off] (What's this?)

  • 1. Robert Bieri and Ralph Strebel, Almost finitely presented soluble groups, Comment. Math. Helv. 53 (1978), no. 2, 258–278. MR 0498863
  • 2. Th. Coulhon, A. Grigor'yan, and Ch. Pittet, A geometric approach to on-diagonal heat kernels lower bounds on groups, Annales de l'Institut Fourier 51 (2001), 1763-1827. (2002).
  • 3. Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869
  • 4. Benson Farb and Lee Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, Invent. Math. 131 (1998), no. 2, 419–451. With an appendix by Daryl Cooper. MR 1608595, 10.1007/s002220050210
  • 5. Benson Farb and Lee Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000), no. 2, 145–202. MR 1768110, 10.1007/BF02392628
  • 6. P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622. MR 0110750
  • 7. Irving Kaplansky, Infinite abelian groups, Revised edition, The University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
  • 8. Harry Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–156. MR 0112053
  • 9. Ch. Pittet and L. Saloff-Coste, On random walks on wreath products, The Annals of Probability 30 (2002), no. 2, 948-997.
  • 10. -, Random walk and isoperimetry on discrete subgroups of Lie groups, Random walks and discrete potential theory, Cortona (M. Picardello and W. Woess, eds.), Walter de Gruyter, 1997, pp. 306-319. CMP 2001:06
  • 11. Christophe Pittet and Laurent Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 293–316. MR 1714851
  • 12. -, On the stability of the behavior of random walks on groups, The Journal of Geometric Analysis 10 (2001), 701-726. CMP 2001:09
  • 13. William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
  • 14. Nicholas Th. Varopoulos, Random walks on soluble groups, Bull. Sci. Math. (2) 107 (1983), no. 4, 337–344 (English, with French summary). MR 732356
  • 15. N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884
  • 16. Wolfgang Woess, Random walks on infinite graphs and groups—a survey on selected topics, Bull. London Math. Soc. 26 (1994), no. 1, 1–60. MR 1246471, 10.1112/blms/26.1.1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F69, 82B41, 60B99, 20F16

Retrieve articles in all journals with MSC (2000): 20F69, 82B41, 60B99, 20F16

Additional Information

Christophe Pittet
Affiliation: Laboratoire Emile Picard, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France

Laurent Saloff-Coste
Affiliation: Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853-4201

Keywords: Random walk, heat kernel decay, asymptotic invariants of infinite groups, metabelian groups
Received by editor(s): August 6, 2001
Received by editor(s) in revised form: November 19, 2001
Published electronically: September 5, 2002
Additional Notes: The first author was supported by a Delegation CNRS at UMR 5580
The second author was supported by NSF grant DMS-9802855
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2002 American Mathematical Society