Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hardy's inequality and the boundary size


Authors: Pekka Koskela and Xiao Zhong
Journal: Proc. Amer. Math. Soc. 131 (2003), 1151-1158
MSC (2000): Primary 26D10, 31C99, 46E35
DOI: https://doi.org/10.1090/S0002-9939-02-06711-4
Published electronically: July 26, 2002
MathSciNet review: 1948106
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a self-improving property of the Hardy inequality and an estimate on the size of the boundary of a domain supporting a Hardy inequality.


References [Enhancements On Off] (What's this?)

  • 1. H. Aikawa and M. Essén, Potential theory--selected topics, Lecture Notes in Mathematics, 1663, Springer-Verlag, Berlin, 1996. MR 98f:31005
  • 2. A. Ancona, On strong barriers and an inequality of Hardy for domains in ${\mathbf R}^n$, J. London Math. Soc. (2) 34 (1986), 274-290. MR 87k:31004
  • 3. J. Björn, P. MacManus, N. Shanmugalingam, Fat sets and Hardy inequalities in metric spaces, J. Anal. Math. 85 (2001), 339-369.
  • 4. M. Bourdon and H. Pajot, Poincaré inequalities and quasiconformal structures on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999), 2315-2324. MR 99j:30024
  • 5. D. Danielli, N. Garofalo and Duy-Minh, Nhieu, Trace inequalities for Carnot-Caratheodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27 (1998), 195-252. MR 2000d:46039
  • 6. P. Haj\lasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, 101 pp. MR 2000j:46063
  • 7. J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61. MR 99j:30025
  • 8. J. Kinnunen and O. Martio, The Sobolev capacity on metric spaces, Ann. Acad. Sci. Fenn. Math. (2) 21 (1996), 367-382. MR 98c:46063
  • 9. A. Kufner, Weighted Sobolev spaces, Teubner-texte, 1980, 2nd ed. MR 84e:46029
  • 10. T. J. Laakso, Ahlfors Q-regular spaces with arbitrary Q admitting a weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), 111-123. MR 2001m:30027
  • 11. J.L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177-196. MR 89e:31012
  • 12. J.L. Lewis, On very weak solutions of certain elliptic systems, Comm. P. D. E. 18 (1993), 1515-1537. MR 94g:35087
  • 13. V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin - New York, 1985.
  • 14. J.D. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin - New York, 1989. MR 90j:42053
  • 15. A. Wannebo, Hardy inequalities, Proc. Amer. Math. Soc. 109 (1990), 85-95. MR 90h:26025

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 26D10, 31C99, 46E35

Retrieve articles in all journals with MSC (2000): 26D10, 31C99, 46E35


Additional Information

Pekka Koskela
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, Fin-40351 Jyväskylä, Finland
Email: pkoskela@math.jyu.fi

Xiao Zhong
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, Fin-40351 Jyväskylä, Finland
Email: zhong@math.jyu.fi

DOI: https://doi.org/10.1090/S0002-9939-02-06711-4
Received by editor(s): May 30, 2001
Received by editor(s) in revised form: November 5, 2001
Published electronically: July 26, 2002
Additional Notes: This research was partially supported by the Academy of Finland, projects 39788 and 41964, and the foundation Vilho, Yrjö ja Kalle Väisälän rahasto (X.Z.). Part of this research was done while the second author was visiting at the Mittag-Leffler Institute. He wishes to thank the Institute for their support and hospitality.
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society