Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The short resolution of a lattice ideal


Author: Pilar Pisón Casares
Journal: Proc. Amer. Math. Soc. 131 (2003), 1081-1091
MSC (2000): Primary 13D02, 14M25; Secondary 13P10, 68W30
DOI: https://doi.org/10.1090/S0002-9939-02-06767-9
Published electronically: September 19, 2002
MathSciNet review: 1948098
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The short resolution of a lattice ideal is a free resolution over a polynomial ring whose number of variables is the number of extremal rays in the associated cone. A combinatorial description of this resolution is given. In the homogeneous case, the regularity can be computed from this resolution.


References [Enhancements On Off] (What's this?)

  • 1. R. APERY,
    Sur les branches superlinéaires des courbes algébriques.
    C.R. Acad. Sci. Paris, 222, (1946), 1198-1200. MR 8:221a
  • 2. D. BAYER, B. STURMFELS,
    Cellular resolutions of monomial modules.
    J. reine angew. Math., 502, (1998), 123-140. MR 99g:13018
  • 3. E. BRIALES, A. CAMPILLO, C. MARIJUÁN, P. PISÓN,
    Minimal Systems of Generators for Ideals of Semigroups.
    J. of Pure and Applied Algebra, 124, (1998), 7-30. MR 98k:20105
  • 4. E. BRIALES, A. CAMPILLO, P. PISÓN, A. VIGNERON,
    Simplicial Complexes and Syzygies of Lattice Ideals.
    in Symbolic Computation: Solving Equations in Algebra, Geometry and Engineering, American Mathematical Society, Contemporary Mathematics, 286, (2001), 169-183.
  • 5. E. BRIALES, P. PISÓN, A. VIGNERON,
    The Regularity of a Toric Variety.
    Journal of Algebra, 237, (2001), 165-185.
  • 6. A. CAMPILLO, P. GIMÉNEZ,
    Syzygies of affine toric varieties.
    Journal of Algebra, 225, (2000), 142-161. MR 2001j:13014
  • 7. A. CAMPILLO, C. MARIJUÁN,
    Higher relations for a numerical semigroup.
    Sém. Théor. Nombres Bordeaux, 3, (1991), 249-260.
  • 8. L. GRUSON, R. LAZARSFELD, C. PESKINE,
    On a theorem of Castelnuovo and equations defining space curves.
    Invent. Math., 72, (1983), 491-506. MR 85g:14033
  • 9. S. L'VOVSKY,
    On inflection points, monomial curves, and hypersurfaces containing projective curves.
    Math. Ann., 306, (1996), 719-735. MR 99e:14033
  • 10. P. PISÓN-CASARES, A. VIGNERON-TENORIO,
    First Syzygies of Toric Varieties and Diophantine Equations in Congruence.
    Communications in Algebra, 29, 4, (2001).
  • 11. R. LA SCALA, M. STILLMAN,
    Strategies for Computing Minimal Free Resolutions,
    J. Symbolic Computation, 26, (1998), 409-431. MR 99k:13039
  • 12. B. STURMFELS,
    Gröbner Bases and Convex Polytopes.
    AMS University Lectures Series, Vol. 8 (1996). MR 97b:13034
  • 13. A. VIGNERON-TENORIO,
    Semigroup Ideals and Linear Diophantine Equations.
    Linear Algebra and its Applications, 295 (1999), 133-144.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D02, 14M25, 13P10, 68W30

Retrieve articles in all journals with MSC (2000): 13D02, 14M25, 13P10, 68W30


Additional Information

Pilar Pisón Casares
Affiliation: Departamento de Álgebra, Facultad de Matemáticas, University of Sevilla, Apartado 1160, 41080 Sevilla, Spain
Email: pilar@algebra.us.es, ppison@us.es

DOI: https://doi.org/10.1090/S0002-9939-02-06767-9
Keywords: Minimal free resolutions, simplicial complex, syzygy, lattice ideal, regularity
Received by editor(s): July 26, 2001
Received by editor(s) in revised form: November 21, 2001
Published electronically: September 19, 2002
Additional Notes: This work was supported by MCyT Spain, BFM2000-1523
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society