Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the regularized Whittaker-Kotel'nikov-Shannon sampling formula


Author: Liwen Qian
Journal: Proc. Amer. Math. Soc. 131 (2003), 1169-1176
MSC (2000): Primary 41A80, 41A30; Secondary 65D25, 65G99, 94A24
DOI: https://doi.org/10.1090/S0002-9939-02-06887-9
Published electronically: October 24, 2002
MathSciNet review: 1948108
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Error estimation is given for the regularized Whittaker-Kotel'nikov-Shannon (WKS) sampling formula, which was found to be accurate and robust for numerically solving partial differential equations. The result improves the convergence rate of existing results.


References [Enhancements On Off] (What's this?)

  • 1. E. T. Whittaker, On the functions which are represented by the expansion of the interpolation theory, Proc. Roy. Soc. Edinburgh, sec. A, 35 (1915), 181-194.
  • 2. V. Kotel'nikov, On the carrying capacity of the ``ether" and wire in telecommunications, material for the first All-Union Conference on Questions of Communications, Izd. Red. Upr. Svyazi RKKA, Moscow, Russian (1933).
  • 3. C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379-423.
  • 4. Robert J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Spring-Verlag, 1991. MR 92j:41001
  • 5. A. I. Zayed, Advances in Shannon's Sampling Theory, CRC Press, 1993. MR 95f:94008
  • 6. J. R. Higgins, Sampling theory in Fourier and signal analysis : foundations, Oxford University Press, 1996.
  • 7. D. Jagerman, Bounds for truncation error of the sampling expansion. SIAM J. Appl. Math., 14 (1966), 714-723. MR 35:4673
  • 8. P. L. Butzer and R. L. Stens, A modification of the Whittaker-Kotel'nikov-Shannon sampling series, Aequationés Mathematicae 28 (1985), 305-311. MR 87a:94016
  • 9. R. Gervais, Q. I. Rahman, and G. Schmeisser, A bandlimited function simulating a duration-limited one. Anniversary Volume on Approximation Theory and Functional Analysis, Birkhäuser, Basel, (1984), 355-362. MR 87i:41002
  • 10. G. W. Wei, D. S. Zhang, D. J. Kouri and D. K. Hoffman, Lagrange Distributed Approximating Functionals, Phys. Rev. Lett. 79 (1997), 775-779.
  • 11. G. W. Wei, Quasi wavelets and quasi interpolating wavelets, Chem. Phys. Lett. 296 (1998), 215-222.
  • 12. G. W. Wei, Discrete singular convolution method for the Sine-Gordon equation, Physica D 137:3-4 (2000), 247-259. MR 2000j:65101
  • 13. G. W. Wei, Solving quantum eigenvalue problems by discrete singular convolution, J. Phys. B 33 (2000), 343-359.
  • 14. S. Guan, C.-H. Lai and G. W. Wei, Fourier-Bessel Analysis of Patterns in a Circular Domain, Physica D 151:2-4 (2001), 83-98. MR 2002d:35178
  • 15. H. D. Pollak, A Remark on `Elementary Inequalities for Mills' Ratio' by Yûsaku Komatu, Rep. Stat. Appl. Res., JUSE 4:3 (1956). MR 18:722a
  • 16. E. D. Rainville, Special functions, Macmillan, 1960. MR 21:6447; reprint MR 52:14399

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 41A80, 41A30, 65D25, 65G99, 94A24

Retrieve articles in all journals with MSC (2000): 41A80, 41A30, 65D25, 65G99, 94A24


Additional Information

Liwen Qian
Affiliation: Department of Computational Science, National University of Singapore, Singapore 117543
Address at time of publication: Singapore–MIT Alliance (SMA), E4-4-10, National University of Singapore, Singapore 117576
Email: qianlw@cz3.nus.edu.sg, smaqlw@nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9939-02-06887-9
Keywords: Whittaker-Kotel'nikov-Shannon's sampling formula, regularization, error estimate
Received by editor(s): April 23, 2001
Received by editor(s) in revised form: November 8, 2001
Published electronically: October 24, 2002
Communicated by: David Sharp
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society