Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Polynomial Pell's equation

Authors: William A. Webb and Hisashi Yokota
Journal: Proc. Amer. Math. Soc. 131 (2003), 993-1006
MSC (1991): Primary 11D25, 11A55
Published electronically: November 6, 2002
MathSciNet review: 1948087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the polynomial Pell's equation $X^2 -DY^2 = 1$, where $D = A^2 + 2C$is a monic polynomial in ${\mathcal Z}[x]$ and $\deg{C} < \deg{A}$. Then for $A, C \in {\mathcal Q}[x]$, $\deg{C} < 2$, and $B = A/C \in {\mathcal Q}[x]$, a necessary and sufficient condition for the polynomial Pell's equation to have a nontrivial solution in ${\mathcal Z}[x]$ is obtained.

References [Enhancements On Off] (What's this?)

  • 1. N. H. Abel, Sur l'intégration de la formule différentielle $\rho dx/\sqrt{R}$, $R$ et $\rho$ étant des fonctions entières, in: Oeuvres Complètes de Niels Henrik Abel (L. Sylow and S. Lie, eds.). Christiania, t, 1 (1881), 104-144.
  • 2. E. Artin, Quadratishe Körper im Gebiet der höheren Kongruenzen I, II, in: The Collected Papers of Emil Artin, Addison-Wesley, 1965 (originally published in Math. Z. 19 (1924), 153-246). MR 31:1159
  • 3. L.E. Baum and M. M. Sweet, Continued fractions of algebraic power series in characteristic 2, Ann. of Math. 103 (1976), 593-610. MR 53:13127
  • 4. R.A. Mollin, Polynomial solutions for Pell's equation revisited, Indian J. Pure Appl. Math. 28(4), (1997) 429-438. MR 98b:11025
  • 5. M. B. Nathanson, Polynomial Pell's equations, Proc. of the AMS 56 (1976), 89-92. MR 53:5468
  • 6. A.M.S. Ramasamy, Polynomial solutions for the Pell's equation, Indian J. Pure Appl. Math. 25 (1994), 577-581. MR 95j:11023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11D25, 11A55

Retrieve articles in all journals with MSC (1991): 11D25, 11A55

Additional Information

William A. Webb
Affiliation: Department of Mathematics, Washington State University, Pullman, Washington 99164

Hisashi Yokota
Affiliation: Department of Mathematics, Hiroshima Institute of Technology, 2-1-1 Miyake Saeki-ku Hiroshima, Japan

Keywords: Polynomial Pell's equation
Received by editor(s): April 3, 2001
Published electronically: November 6, 2002
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society