Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interpolation inequalities in Besov spaces


Authors: Shuji Machihara and Tohru Ozawa
Journal: Proc. Amer. Math. Soc. 131 (2003), 1553-1556
MSC (2000): Primary 46B70, 46M35
DOI: https://doi.org/10.1090/S0002-9939-02-06715-1
Published electronically: September 19, 2002
MathSciNet review: 1949885
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present an interpolation inequality in the homogeneous Besov spaces on $\mathbb{R} ^n$, which reduces to a number of well-known inequalities in special cases.


References [Enhancements On Off] (What's this?)

  • [1] H. BAHOURI, P. G´ERARD AND C. -J. XU, Espace de Besov et estimations de Strichartz généralisées sur le group de Heisenberg, J. d'Anal. Math., 82 (2000), 93-118. MR 2001k:58054
  • [2] J. BERGH AND J. L¨OFSTRÖM, Interpolation spaces, Springer, Berlin/Heiderberg/New York (1976). MR 58:2349
  • [3] P. BRENNER, V. THOMÉE AND L. WAHLBIN, Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Math., 434, Springer-Verlag, Berlin/Heidelberg/New York (1975). MR 57:1106
  • [4] A. COHEN, W. DAHMEN, I. DAUBECHIES AND R. DE VORE Harmonic analysis of the space BV, Preprint, RWTH Aachen, Institut für Geometrie und Praktische Mathematik, Nr. 195 (2000) (see http://www.igpm.rwth-aachen.de).
  • [5] M. ESCOBEDO AND L. VEGA, A semilinear Dirac equation in $H^s(\mathbb{R} ^3)$ for $s>1$, SIAM J. Math. Anal., 28 (1997), 338-362. MR 97k:35239
  • [6] P. G´ERARD, Y. MEYER AND F. ORU, Inégalités de Sobolev précisées, Seminaire de EDP, Ecole Polytechnique, 1996-1997. CMP 98:04
  • [7] J. GINIBRE AND G. VELO, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505. MR 86f:35149
  • [8] H. KOZONO, T. OGAWA AND Y. TANIUCHI, Critical Sobolev inequalities and application to the semilinear evolution equations (preprint).
  • [9] T. MIYAKAWA, On Morrey spaces of measures: Basic properties and potential estimates, Hiroshima Math. J., 20 (1990), 213-222. MR 91k:46021
  • [10] Y. MEYER, Oscillating patterns in image processing and in some nonlinear evolution equations, The Fifteenth Dean J.B. Lewis Memorial Lectures (2001).
  • [11] M. NAKAMURA AND T. OZAWA, Small solutions to nonlinear Schrödinger equations in the Sobolev spaces, J. d'Anal. Math., 81 (2000), 305-329. MR 2001j:35256
  • [12] T. OGAWA AND Y. TANIUCHI, Critical Sobolev inequality and its application to nonlinear evolution equations in the fluid mechanics, RIMS Kokyuroku, 1162 (2000), 99-106. CMP 2001:05
  • [13] T. OZAWA, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269. MR 96c:46039
  • [14] T. OZAWA, Characterization of Trudinger's inequality, J. Inequal. & Appl., 1 (1997), 369-374. MR 2001e:46061
  • [15] H. TRIEBEL, Theory of Function Spaces, Birkhäuser, Basel (1983). MR 86j:46026

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B70, 46M35

Retrieve articles in all journals with MSC (2000): 46B70, 46M35


Additional Information

Shuji Machihara
Affiliation: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
Address at time of publication: Department of Mathematics, Shimane University, Matsue, Shimane 690-8504, Japan
Email: machihara@math.shimane-u.ac.jp

Tohru Ozawa
Affiliation: Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

DOI: https://doi.org/10.1090/S0002-9939-02-06715-1
Received by editor(s): July 10, 2001
Received by editor(s) in revised form: December 27, 2001
Published electronically: September 19, 2002
Dedicated: Dedicated to Professor Takaaki Nishida on the occasion of his sixtieth birthday
Communicated by: Andreas Seeger
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society