Endpoint estimates for the circular maximal function

Author:
Sanghyuk Lee

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1433-1442

MSC (2000):
Primary 42B25; Secondary 35L05

DOI:
https://doi.org/10.1090/S0002-9939-02-06781-3

Published electronically:
September 19, 2002

MathSciNet review:
1949873

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of endpoint estimates for the circular maximal function defined by

where is the normalized surface area measure on . Let be the closed triangle with vertices . We prove that for , there is a constant such that Furthermore, .

**[B1]**J. Bourgain,*Averages in the plane over convex curves and maximal operators*, J. Analyse Math.**47**(1986), 69-85. MR**88f:42036****[B2]**J. Bourgain,*On high-dimensional maximal functions associated with convex bodies*, Amer. J. Math.**108**(1986), 1467-1476. MR**88h:42020****[B3]**J. Bourgain,*Estimations de certaines functions maximales*, C.R. Acad. Sci. Paris**301**(1985), 499-502. MR**87b:42023****[CSW]**A. Carbery, A. Seeger, S. Wainger, and J. Wright,*Class of singular integral operators along variable lines*, Journal of Geometric Analysis**9**(1999), 583-605. MR**2001g:42026****[BL]**J. Bergh and J. Löfström,*Interpolation spaces: An introduction*, Springer-Verlag, New York, 1976. MR**58:2349****[MSS]**G. Mockenhaupt, A. Seeger and C.D. Sogge,*Wave front sets, local smoothing and Bourgain's circular maximal theorem*, Annals of Math.**136**(1992), 207-218. MR**93i:42009****[S]**W. Schlag,*A generalization of Bourgain's circular maximal theorem*, Jour. Amer. Math. Soc.**10**(1997), 103-122. MR**97c:42035****[SS]**W. Schlag and C. D. Sogge,*Local smoothing estimates related to the circular maximal theorem*, Math. Res. Let.**4**(1997), 1-15. MR**98e:42018****[SW]**E.M. Stein and G. Weiss,*Introduction to Fourier analysis on Euclidean spaces*, Princeton University Press, 1971. MR**46:4102****[T]**T. Tao,*Endpoint bilinear restriction theorems for the cone and some sharp null form estimates*, to appear, Math. Z.**[TVV]**T. Tao, A. Vargas, L. Vega,*A bilinear approach to the restriction and Kekeya conjectures*, J. Amer. Math. Soc.**11**(1998), 967-1000. MR**99f:42026****[TV1]**T. Tao, A.Vargas,*A bilinear approach to cone multipliers. I*, Geometric and functional analysis**10**(2000), 185-215. MR**2002e:42012****[TV2]**T. Tao, A.Vargas,*A bilinear approach to cone multipliers. II*, Geometric and functional analysis**10**(2000), 216-258. MR**2002e:42013****[W]**T. Wolff,*A sharp cone restriction estimate*, Annals of Math.**153**(2001), 661-698.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B25,
35L05

Retrieve articles in all journals with MSC (2000): 42B25, 35L05

Additional Information

**Sanghyuk Lee**

Affiliation:
Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea

Email:
huk@euclid.postech.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-02-06781-3

Keywords:
Circular maximal function,
endpoint estimates

Received by editor(s):
June 12, 2001

Received by editor(s) in revised form:
December 7, 2001

Published electronically:
September 19, 2002

Additional Notes:
The author was partially supported by the BK21 Project (PI: Jong-Guk Bak).

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2002
American Mathematical Society