Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On pointwise estimates for the Littlewood-Paley operators


Author: Andrei K. Lerner
Journal: Proc. Amer. Math. Soc. 131 (2003), 1459-1469
MSC (2000): Primary 42B25
DOI: https://doi.org/10.1090/S0002-9939-02-06782-5
Published electronically: September 19, 2002
MathSciNet review: 1949876
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper we proved pointwise estimates relating some classical maximal and singular integral operators. Here we show that inequalities essentially of the same type hold for the Littlewood-Paley operators.


References [Enhancements On Off] (What's this?)

  • 1. D.L. Burkholder and R.F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44(1972), 527-544. MR 49:5309
  • 2. R.R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 15(1974), 241-250. MR 50:10670
  • 3. R.R. Coifman and R. Rochberg, Another characterization of $BMO$, Proc. Amer. Math. Soc. 79(1980), 249-254. MR 81b:42067
  • 4. C. Fefferman and E.M. Stein, $H^p$ spaces of several variables, Acta Math. 129(1972), 137-193. MR 56:6263
  • 5. R. Fefferman, R.F. Gundy, M. Silverstein and E.M. Stein, Inequalities for ratios of functionals of harmonic functions, Proc. Nat. Acad. Sci. U.S.A. 79(1982), 7958-7960. MR 85c:42024
  • 6. M. de Guzman, Differentiation of integrals in ${\mathbb R}^n$, Lecture Notes in Math., 481, Springer-Verlag 1975. MR 56:15866
  • 7. D.S. Kurtz, Rearrangement inequalities for Littlewood-Paley operators, Math. Nachr. 133(1987), 71-90. MR 89c:42016
  • 8. M.A. Leckband, A note on exponential integrability and pointwise estimates of Littlewood-Paley functions, Proc. Amer. Math. Soc. 109(1990), 185-194. MR 91f:42020
  • 9. A.K. Lerner, On pointwise estimates for maximal and singular integral operators, Studia Math. 138(2000), 285-291. MR 2001b:42016
  • 10. B. Muckenhoupt and R.L. Wheeden, Norm inequalities for the Littlewood-Paley function $g_{\lambda}^*$, Trans. Amer. Math. Soc. 191(1974), 95-111. MR 52:8810
  • 11. T. Murai and A. Uchiyama, Good $\lambda$ inequalities for the area integral and the nontangential maximal function, Studia Math. 83(1986), 251-262. MR 87m:42016
  • 12. E.M. Stein, Singular Integrals and differentiability properties of functions, Princeton Univ. Press 1970. MR 44:7280
  • 13. J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28(1979), 511-544. MR 81f:42021

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25

Retrieve articles in all journals with MSC (2000): 42B25


Additional Information

Andrei K. Lerner
Affiliation: Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat Gan, Israel
Email: aklerner@netvision.net.il

DOI: https://doi.org/10.1090/S0002-9939-02-06782-5
Keywords: Littlewood-Paley operators, pointwise estimates, rearrangements
Received by editor(s): December 7, 2001
Published electronically: September 19, 2002
Communicated by: Andreas Seeger
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society