ON THE DIOPHANTINE EQUATION $x^2 = 4q^m - 4q^n + 1$

FLORIAN LUCA

(Communicated by David E. Rohrlich)

Abstract. In this note, we find all positive integer solutions (x, q, m, n) of the diophantine equation from the title with q a prime power.

In this note, we study the diophantine equation

(1) $x^2 = 4q^m - 4q^n + 1$

in integer unknowns (x, q, m, n), with $x > 0$, $m \geq n \geq 0$, $(m, n) \neq (1, 0)$, and q a prime power. We exclude the pair $(m, n) = (1, 0)$, because in this case equation (1) reduces to

(2) $q = \frac{x^2 + 3}{4}$.

Since x is odd, we may write $x = 2t + 1$ for some positive integer t, and we get that equation (2) is equivalent to finding all solutions of the diophantine equation

(3) $q = t^2 + t + 1$,

where t is a positive integer and q is a prime. It is not known if equation (3) has infinitely many solutions, although there is a conjecture which asserts that equation (3) does admit infinitely many solutions.

When $n = 1$ and $q = 2$, equation (1) reduces to

(4) $x^2 = 2^{m+2} - 7$,

which is a famous diophantine equation due to Ramanujan and first solved by Nagell. When $n = 1$, all solutions of equation (1) with q an odd prime have been found by Skinner in [4], and the general case in which q is an odd prime power has been settled by Mignotte and Pethô in [3]. We also recall that all the solutions of the analogous diophantine equation

(5) $x^2 = 4q^m + 4q^n + 1$

where found, for $n = 1$ and $n = 2$, by Tzanakis de Wolfskill in [5], and for general n, by Mao Hua Le in [2].

First of all, let us notice that we may assume that m and n are coprime if $n > 0$. Indeed, for if m and n are not coprime, then we may write $d := \gcd(m, n)$, $q_1 := q^d$, $m_1 := m/d$, and $n_1 := n/d$, and rewrite equation (1) as

(6) $x^2 = 4q_1^{m_1} - 4q_1^{n_1} + 1$.

Received by the editors September 28, 2001.

2000 Mathematics Subject Classification. Primary 11D61, 11D72.

©2002 American Mathematical Society
which is an equation of the same type as equation (1), but now the new exponents \(m_1 \) and \(n_1 \) are coprime. We also notice that equation (1) has the solutions \(m = n, \ x = 1 \), and \(m = 2n, \ x = 2^n - 1 \) for all \(n \geq 0 \). We shall refer to such solutions as trivial. Our main result in this note is the complete determination of all the non-trivial solutions of equation (1) with \((m, n) \neq (1, 0)\) and \(q \) a prime power.

Theorem. The only non-trivial solutions of equation (1) with \(q \) a prime power and \(m > n \geq 0 \) but \((m, n) \neq (1, 0)\) are

\[
(7) \quad (x, q, m, n) = (37, 7, 3, 0), \ (5, 2, 3, 1), \ (11, 2, 5, 1), \ (181, 2, 13, 1), \ (31, 3, 5, 1), \ (559, 5, 7, 1).
\]

Proof of the Theorem. We first treat the case \(n = 0 \). In this case, equation (1) reduces to

\[
(8) \quad x^2 = 4q^m - 3,
\]

with \(m \geq 2 \). Notice that \(m \) is odd, for if \(m \) is even, then \(4q^m = \left(2q^{m/2}\right)^2 \) is a perfect square, but the only perfect squares which differ by 3 are 1 and 4, which leads to \(x = 1 \) and \(q = 1 \), which is not a convenient solution. Now let \(p \geq 3 \) be any prime divisor of \(m \). We may replace \(m \) by \(p \) and \(q \) by \(q^{m/p} \) and therefore analyze the equation

\[
(9) \quad x^2 = 4q^p - 3.
\]

When \(p = 3 \), with \(X := q \) and \(Y := x \), we get the elliptic curve

\[
Y^2 = 4X^3 - 3.
\]

We used SIMATH to conclude that the only integer solutions of this equation are \((X, Y) = (1, 1)\) and \((7, 37)\). Thus, we get the solution \((x, q, m, n) = (37, 7, 3, 0)\) of equation (1). When \(p \geq 5 \), we rewrite equation (9) as

\[
q^p = \frac{x^2 + 3}{4} = \frac{x + i\sqrt{3}}{2} \left(\frac{x - i\sqrt{3}}{2}\right).
\]

It is easy to see from (9) that \(q \) is coprime to 3, therefore the two algebraic integers appearing in the right-hand side of equation (11) are coprime in the ring of algebraic integers of \(\mathbb{Q}[i\sqrt{3}] \). Since the ring of algebraic integers \(\mathbb{Z}[\frac{1+i\sqrt{3}}{2}] \) of \(\mathbb{Q}[i\sqrt{3}] \) is euclidian, it follows that there exist two integers \(a \) and \(b \) with \(a \equiv b \pmod{2} \), and a unit \(\zeta \) in \(\mathbb{Z}[\frac{1+i\sqrt{3}}{2}] \), such that

\[
(12) \quad \frac{x + i\sqrt{3}}{2} = \zeta z^p
\]

where

\[
(13) \quad z = \frac{a + i\sqrt{3}b}{2}.
\]

Notice that \(x > 1 \), therefore \(z \) is not a root of unity. Since \(p \geq 5 \) and all the units of \(\mathbb{Z}[\frac{1+i\sqrt{3}}{2}] \) are torsioned of order dividing 6, it follows that, up to a substitution, we may assume that \(\zeta = 1 \) in formula (12). Eliminating \(x \) from (12) we get

\[
(14) \quad i\sqrt{3} = z^p - \bar{z}^p.
\]

But \(z - \bar{z} = bi\sqrt{3} \) and

\[
\frac{z^p - \bar{z}^p}{z - \bar{z}} \in \mathbb{Z}.
\]
ON THE DIOPHANTINE EQUATION $x^2 = 4q^n - 4q^m + 1$

Thus, it follows that $b = \pm 1$ and

\begin{equation}
\left(\frac{z^p - \overline{z}^p}{z - \overline{z}}\right) = \pm 1.
\end{equation}

For any integer $k \geq 0$ let

\begin{equation}
u_k := \left(\frac{z^k - \overline{z}^k}{z - \overline{z}}\right).
\end{equation}

Then $(u_k)_{k \geq 0}$ is a Lucas sequence of the first kind, and equation (15) is equivalent to $u_1 = \pm 1$. However, it is well known that, in general, the kth term of a Lucas sequence has a primitive divisor. That is, for $k \neq 1, 2, 3, 6$, there exists, with a few exceptions, a prime number $P \equiv \pm 1 \pmod{k}$ such that $P | u_k$. Equation (15) now tells us that u_p has no primitive divisor. The members of Lucas sequences with no primitive divisors have recently been completely classified by Bilu, Hanrot and Voutier in [1]. In particular, from the result in [1], we know that if $p \geq 5$ is a prime, then u_p has primitive divisors except for $p = 5, 7, 13$, and a few exceptional values of z, which are listed in Table 1 in [1]. None of the exceptional Lucas terms from Table 1 in [1] leads to a value of $z \in \mathbb{Q}[\sqrt{3}]$. Thus, there is no solution of equation (8) with $x > 1$ and $m > 3$. This concludes the analysis for the case $n = 0$.

From now on, we assume that $n > 0$. All the solutions of equation (1) with $n = 1$ were found by Mignotte and Pethő in [3], and these solutions are listed in formula (7). Thus, from now on we assume that $n \geq 2$, $m > n$, and m and n are coprime.

We start by writing

\begin{equation}
4q^n - 1 = Dw^2,
\end{equation}

where $D \geq 1$ is square-free. We first show that $D > 3$. Clearly, $D \neq 1$ because -1 is not a quadratic residue modulo 4. Assume now that $D = 3$. Since -1 is not a quadratic residue modulo 3, it follows that n is odd. Let p be a prime divisor of n. By writing $q_1 := q^n/p$, it follows that we need to investigate the equation

\begin{equation}
4q_1^p - 1 = 3w^2,
\end{equation}

where q_1 is a prime power and $p \geq 3$ is prime. When $p = 3$, with the substitution $X := q_1$ and $Y := w$, we get the elliptic curve

\begin{equation}3Y^2 = 4X^3 - 1.
\end{equation}

We used SIMATH to conclude that the only integer solution of (19) is $(X, Y) = (1, 1)$. Thus, there is no solution (q_1, w) of equation (18) for $p = 3$. Assume now that $p \geq 5$ and rewrite (18) as

\begin{equation}q_1^p = \frac{1 + 3w^2}{4} = \left(\frac{1 + i\sqrt{3}w}{2}\right)\left(\frac{1 - i\sqrt{3}w}{2}\right).
\end{equation}

We now use an argument similar to one employed above, to conclude that equation (20) implies the existence of an algebraic number $z \in \mathbb{Z}[\frac{1+i\sqrt{3}}{2}]$ such that

\begin{equation}q = z^p
\end{equation}

and

\begin{equation}\frac{1 + i\sqrt{3}w}{2} = z^p.
\end{equation}
Notice that \(w > 1 \) so \(z \) is not a root of unity. From equation (22) we get

\[
1 = z^p + \pi^p = \frac{z^{2p} - \pi^{2p}}{z^p - \pi^p} = \frac{u_{2p}}{u_p}.
\]

The numbers \(u_{2p} \) and \(u_p \) appearing in formula (23) are the same as the ones shown in (16). Thus, from (23), we get that \(u_{2p} = u_p \), which implies that \(u_{2p} \) has no primitive divisor. We again use Table 1 in [1] to conclude that the only possible case is \(p = 5 \) and \(z := \frac{5+i\sqrt{2}}{2} \), but for this choice of \(p \) and \(z \) the relation \(u_5 = u_{10} \) does not hold (in fact, \(u_{10}/u_5 = -25 \) in this case). Thus, the conclusion of this argument is that if \(n \geq 2 \), then \(D > 3 \).

Now let \(q := p^f \), where \(p \) is a prime and \(f \geq 1 \). Notice that \(D \equiv 3 \pmod{4} \) so that \(-D\) is the discriminant of the quadratic field \(K := \mathbb{Q}[i\sqrt{D}] \). Moreover, \(p \) splits in \(K \). Indeed, if \(p \) is odd, then

\[
\left(\frac{-D}{p}\right) = \left(\frac{-Dw^2}{p}\right) = \left(\frac{1 - 4q^n}{p}\right) = \left(\frac{1}{p}\right) = 1.
\]

In the above computation, for an integer \(a \), we used \(\left(\frac{a}{p}\right) \) to denote the Legendre symbol of \(a \) with respect to \(p \). If \(p = 2 \), then equation (17) implies that \(D \equiv 7 \pmod{8} \), therefore \(-D \equiv 1 \pmod{8} \), so \(2 \) splits in \(K \). Write \((p) = \pi \pi \), where \(\pi \) is a prime ideal. From equation (17), we get

\[
p^{f_n} = q^n = \frac{1 + Dw^2}{4} = \left(\frac{1 + i\sqrt{D}w}{2}\right) \left(\frac{1 - i\sqrt{D}w}{2}\right).
\]

If we rewrite (25) in terms of ideals in \(K \), we get

\[
\pi^{f_n} \cdot \overline{\pi}^{f_n} = \left[\frac{1 + i\sqrt{D}w}{2}\right] \cdot \left[\frac{1 - i\sqrt{D}w}{2}\right].
\]

It is easy to check that the two ideals appearing in the right-hand side of equation (26) are coprime (indeed, the sum of their generators is \(1 \)). From the unique factorization property for ideals, it follows that, up to interchanging \(\pi \) by \(\overline{\pi} \), the equality

\[
\pi^{f_n} = \left[\frac{1 + i\sqrt{D}w}{2}\right]
\]

must hold. Let \(o(\pi) \) be the order of the ideal class of \(\pi \) in the ideal class group \(C_K \) of \(K \). Since \(\pi^{f_n} \) is principal, it follows that \(o(\pi) \) divides \(nf \).

We now return to equation (1) and write it as

\[
4q^m = x^2 + 4q^n - 1 = x^2 + Dw^2
\]

or

\[
q^m = \frac{x^2 + Dw^2}{4} = \left(\frac{x + i\sqrt{D}w}{2}\right) \left(\frac{x - i\sqrt{D}w}{2}\right).
\]

We interpret (29) in terms of ideals by writing

\[
\pi^{f_m} \cdot \overline{\pi}^{f_m} = \left[\frac{x + i\sqrt{D}w}{2}\right] \cdot \left[\frac{x - i\sqrt{D}w}{2}\right].
\]

It is easy to check that the two ideals appearing in the right-hand side of (30) are coprime. Indeed, let \(p \) be a prime ideal dividing both \(\pi + i\sqrt{D}w \) and \(\pi - i\sqrt{D}w \). Then \(p \) divides \(i\sqrt{D}w \), therefore \(N_K(p) \mid Dw^2 \). Thus, \(N_K(p) \) divides \(4q^n - 1 \). However, since \(p \) also divides \(q^m \), we get \(N_K(p) \mid q^{2m} \). But obviously, \(4q^n - 1 \) and \(q^m \) are
ON THE DIOPHANTINE EQUATION \(x^2 = 4q^m - 4q^n + 1 \)

coprime. Thus, since the two ideals appearing in the right-hand side of equation (30) are coprime, it follows, by the unique factorization property for ideals, that, up to replacing \(w \) with \(-w\), we have

\[
\pi^m = \left(\frac{x + i\sqrt{D}w}{2} \right).
\]

In particular, \(\pi^m \) is principal, which implies that \(o(\pi) \mid fm \). Since \(o(\pi) \mid fn \) as well, and since \(m \) and \(n \) are coprime, it follows that \(o(\pi) \mid f \). Hence, \(\pi^f \) is principal.

Now let \(a \) and \(b \) be two integers with \(a \equiv b \pmod{2} \) such that

\[
z := \frac{a + i\sqrt{D}b}{2}
\]

is a generator of \(\pi^f \). We then get

\[
[q] = [p'] = \pi^f \pi^f = [z] \cdot [\overline{z}],
\]

therefore, from equation (26), we conclude that

\[
[z^n] \cdot [\overline{z}^n] = [q^n] = \left[\frac{1 + i\sqrt{D}w}{2} \right] \left[\frac{1 - i\sqrt{D}w}{2} \right].
\]

The two ideals appearing on the right-hand side of equation (33) are coprime and so are the two ideals appearing on the left-hand side. Since the ideals appearing on the left-hand side are prime powers, it follows, from the unique factorization property for ideals, that we may assume (up to replacing \(b \) by \(-b\))

\[
[z^n] = \left[\frac{1 + i\sqrt{D}w}{2} \right].
\]

Equation (34) together with the fact that \(D > 3 \) (that is, the only units in \(K \) are \(\pm 1 \)) implies that

\[
1 + i\sqrt{D}w = \pm z^n.
\]

Eliminating \(w \) from equation (35), we get

\[
\pm 1 = z^n + \overline{z}^n = \frac{z^{2n} - \overline{z}^{2n}}{z^n - \overline{z}^n} = \frac{u_{2n}}{u_n},
\]

where for a positive integer \(k \) the number \(u_k \) is given in formula (16). Thus, we again get that \(u_{2n} \) has no primitive divisors.

We first treat the case \(n \geq 3 \). If \(n = 3 \), then from formula (32) and equation (36) we get

\[
\pm 1 = z^3 + \overline{z}^3 = \frac{a^3 - 3Dab^2}{4}
\]

or

\[
\pm 4 = a(a^2 - 3Db^2).
\]

If \(a \) is even, then so is \(b \) (because \(a \equiv b \pmod{2} \)), and in this case the right-hand side of (37) is a multiple of 8, which is impossible. Thus, \(a \) is an odd divisor of 4, therefore \(a = \pm 1 \). From equation (37) we now conclude that \(3Db^2 = \pm 3, \pm 5 \), which is obviously impossible.
Assume now that \(n \geq 4 \). In this case, \(2n \geq 8 \) and \(u_{2n} \) has no primitive divisors. From Table 1 in [1], together with the fact that \(z \) is complex non-real and that \(D > 3 \) is odd, it follows that the only possibilities are

- \(n = 4 \) and \(z := \frac{1 + i\sqrt{7}}{2} \);
- \(n = 5 \) and \(z := \frac{5 + i\sqrt{17}}{2} \);
- \(n = 6 \) and \(z := \frac{1 + i\sqrt{7}}{2}, \frac{1 + i\sqrt{11}}{2}, \frac{1 + i\sqrt{15}}{2}, \frac{1 + i\sqrt{19}}{2} \); or
- \(n = 9 \) and \(z := \frac{1 + i\sqrt{7}}{2} \).

Out of the above possibilities, only the first one, namely \(n = 4 \) and \(z := \frac{1 + i\sqrt{7}}{2} \), satisfies equation (36). Thus, \(q = 2, n = 4, D = 7, \) and \(w = 3 \), and equation (29) can be rewritten as

\[
2^m = \left(\frac{x + 3i\sqrt{7}}{2} \right) \left(\frac{x - 3i\sqrt{7}}{2} \right).
\]

From arguments similar to the ones previously employed, we get that, up to replacing \(x \) by \(-x\), any solution \((x, m)\) of the above equation (38) will satisfy

\[
\frac{x + 3i\sqrt{7}}{2} = \pm \bar{z}^m,
\]

with \(z = \frac{1 + i\sqrt{7}}{2} \). Eliminating \(x \) from equation (39), we get

\[
\pm 3i\sqrt{7} = z^m - \bar{z}^m
\]

or

\[
u_m = \pm 3,
\]

where for a positive integer \(k \), the number \(u_k \) is given by formula (16). From [1], we know that if \(m \geq 31 \), then \(u_m \) has a primitive divisor which is at least as large as \(m - 1 > 3 \). Thus, \(m \leq 30 \). We have computed all the terms \(u_m \) for \(m \) in the interval \([5, 30]\) and only \(m = 4 \) and \(m = 8 \) satisfy (40), but they are not convenient, because we are searching for solutions of equation (1) with \(m \) and \(n \) coprime. Thus, the conclusion so far is that \(n \geq 3 \) cannot hold.

Thus, \(n = 2 \). In particular, \(m \geq 3 \) is odd. Equation (36) now tells us that

\[
\pm 1 = z^2 + \bar{z}^2 = \frac{a^2 - Db^2}{2}.
\]

Notice that equation (41) implies, in particular, that \(a^2 \) and \(Db^2 \) are coprime (recall that \(D \) is odd), and that \(a \neq \pm 1 \). Equation (35) now tells us that

\[
\frac{1 + i\sqrt{D}w}{2} = \pm z^2 = \pm \left(\frac{(a^2 - Db^2)}{4} + i\sqrt{D}ab \right),
\]

therefore

\[
w = \pm ab.
\]

We now return to equation (29) and write it under the form

\[
z^m \cdot \bar{z}^m = q^m = \left(\frac{x + i\sqrt{D}w}{2} \right) \left(\frac{x - i\sqrt{D}w}{2} \right).
\]
From arguments similar to the previous ones, we conclude that, up to replacing \(x \) by \(-x\), we can write

\[(45)\]
\[\frac{x + i \sqrt{Dw}}{2} = \pm z^m,\]

and now by eliminating \(x \) from equation (45), we get

\[(46)\]
\[\pm i \sqrt{Dab} = \pm i \sqrt{Dw} = \mp z^m.\]

By applying the binomial formula in equation (46), we get that

\[(47)\]
\[\pm ab = \frac{b}{2^{m-1}} (ma^{m-1} - \cdots + (-1)^{(m-1)/2} D^{(m-1)/2} b^{m-1}).\]

From equation (47), we conclude right away that \(a \mid D^{(m-1)/2} b^{m-1} \). Since \(a^2 \) and \(Db^2 \) are coprime, it follows that \(a = \pm 1 \), which, as we have already seen, is impossible.

So, it follows that equation (1) has no non-trivial solutions with \(n > 1 \) and \(\gcd(m, n) = 1 \).

The Theorem is therefore proved. \(\square \)

Remark. The method used in this paper can be employed to find, for a given odd integer \(k \), all solutions of the diophantine equation

\[(48)\]
\[x^2 = 4q^m - 4q^n + k^2,\]

with \(m \geq n \geq 0 \), \((m, n) \neq (1, 0)\) and \(q \) a prime power. The case treated here is, of course, \(k = 1 \). We do not give further details.

Acknowledgements

This work was done when I visited the Tata Institute for Fundamental Sciences in Mumbai, India in Summer 2001. I would like to thank the Institute for its hospitality, Professor T.N. Shorey for his advice and the Third World Academy of Sciences for their support.

References

Instituto de Matemáticas UNAM, Ap. Postal 61-3 (Xangari), CP 58 089, Morelia, Michoacán, México

E-mail address: fluca@matmor.unam.mx