Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extremal metrics for the first eigenvalue of the Laplacian in a conformal class


Authors: Ahmad El Soufi and Saïd Ilias
Journal: Proc. Amer. Math. Soc. 131 (2003), 1611-1618
MSC (2000): Primary 58E11, 58J50, 35P15
DOI: https://doi.org/10.1090/S0002-9939-02-06948-4
Published electronically: December 6, 2002
MathSciNet review: 1950293
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $M$ be a compact manifold. First, we give necessary and sufficient conditions for a Riemannian metric on $M$ to be extremal for $\lambda_1$ with respect to conformal deformations of fixed volume. In particular, these conditions show that for any lattice $\Gamma$ of $\mathbb{R}^n$, the flat metric $g_{\Gamma}$ induced on $\mathbb{R}^n/\Gamma$ from the standard metric of $\mathbb{R}^n$ is extremal (in the previous sense). In the second part, we give, for any $\Gamma$, an upper bound of $\lambda_1$ on the conformal class of $g_{\Gamma}$ and exhibit a class of lattices $\Gamma$ for which the metric $g_{\Gamma}$ maximizes $\lambda_1$ on its conformal class.


References [Enhancements On Off] (What's this?)

  • 1. Bando, S., Urakawa, H.: Generic properties of the eigenvalue of Laplacian for compact Riemannian manifolds. Tôhoku Math. J. 35, 155-172 (1983). MR 84h:58146
  • 2. Berger, M.: Sur les premières valeurs propres des variétés riemanniennes. Compositio. Math. 26, 129-149 (1973). MR 47:5461
  • 3. Colbois, B., Dodziuk, J.: Riemannian metrics with large $\lambda_1$. Proc. Amer. Math. Soc. 122 (3), 905-906 (1994). MR 95a:58130
  • 4. Conway, J.H, Sloane, N.J.A.: Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer Verlag, 1999. MR 2000b:11077
  • 5. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10, 1-68 (1978). MR 82b:58033
  • 6. El Soufi, A., Ilias, S.: Immersions minimales, première valeur propre du laplacien et volume conforme. Math. Ann. 275, 257-267 (1986). MR 87j:53088
  • 7. El Soufi, A., Ilias, S.: Riemannian manifolds admitting isometric immersions by their first eigenfunctions, Pacific J. Math. 195, 91-99 (2000). MR 2001f:53128
  • 8. El Soufi, A., Jeune, A.: Indice de Morse des applications $p$-harmoniques. Ann. Inst. Henri Poincaré, 2, 229-250 (1996). MR 97d:58057
  • 9. El Soufi, A., Ilias, S., Ros, A.: Sur la première valeur propre des tores. Séminaire de th'eorie spectrale et géométrie, Grenoble, 17-23 (1996-1997). MR 99e:58192
  • 10. Li, P., Yau, S.T.: A new conformal invariant and its applications etc. Invent. Math. 69, 269-291 (1982). MR 84f:53049
  • 11. Nadirashvili N.: Berger's isoperimetric problem and minimal immersions of surfaces, GAFA 6, 877-897 (1996). MR 98f:53061
  • 12. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton 1970. MR 43:445

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58E11, 58J50, 35P15

Retrieve articles in all journals with MSC (2000): 58E11, 58J50, 35P15


Additional Information

Ahmad El Soufi
Affiliation: Laboratoire de Mathematiques et Physique Theorique, Universite de Tours, Parc de Grandmont, 37200 Tours, France
Email: elsoufi@univ-tours.fr

Saïd Ilias
Affiliation: Laboratoire de Mathematiques et Physique Theorique, Universite de Tours, Parc de Grandmont, 37200 Tours, France
Email: ilias@univ-tours.fr

DOI: https://doi.org/10.1090/S0002-9939-02-06948-4
Keywords: First eigenvalue of the Laplacian, extremal metrics, conformal classes, harmonic maps
Received by editor(s): January 5, 2000
Received by editor(s) in revised form: May 19, 2000
Published electronically: December 6, 2002
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society