Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

$p$-Rider sets are $q$-Sidon sets


Authors: P. Lefèvre and L. Rodríguez-Piazza
Journal: Proc. Amer. Math. Soc. 131 (2003), 1829-1838
MSC (2000): Primary 43A46
Published electronically: October 1, 2002
MathSciNet review: 1955271
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to prove that for every $p<{\frac43}$, every $p$-Rider set is a $q$-Sidon set for all $q>{\frac p{2-p}}\cdot$ This gives some positive answers for the union problem of $p$-Sidon sets. We also obtain some results on the behavior of the Fourier coefficient of a measure with spectrum in a $p$-Rider set.


References [Enhancements On Off] (What's this?)

  • [B] Ron C. Blei, Sidon partitions and 𝑝-Sidon sets, Pacific J. Math. 65 (1976), no. 2, 307–313. MR 0458058 (56 #16261)
  • [BP] M. Bożejko and T. Pytlik, Some types of lacunary Fourier series, Colloq. Math. 25 (1972), 117–124, 164. MR 0304976 (46 #4106)
  • [DG] M. Déchamps-Gondim, Compacts associés aux ensembles lacunaires, les ensembles de Sidon et propriétés du majorant dans les espaces de Banach, Thèse d'état-Orsay (1983).
  • [FP] John J. F. Fournier and Louis Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math. 105 (1983), no. 1, 115–141. MR 688410 (84h:43013)
  • [JW] G. W. Johnson and Gordon S. Woodward, On 𝑝-Sidon sets, Indiana Univ. Math. J. 24 (1974/75), 161–167. MR 0350328 (50 #2821)
  • [K] Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043 (43 #801)
  • [L] Pascal Lefèvre, Measures and lacunary sets, Studia Math. 133 (1999), no. 2, 145–161. MR 1686694 (2000a:42007)
  • [LLQR] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Lacunary sets and function spaces with finite cotype, J. Functional Analysis 188 (2002), 272-291.
  • [LQR] D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new thin sets of integers in harmonic analysis, To appear in J. Analyse Math.
  • [M] J.-F. Méla, Mesures 𝜖-idempotentes de norme bornée, Studia Math. 72 (1982), no. 2, 131–149 (French). MR 665414 (84a:43007)
  • [MP] Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, vol. 101, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 630532 (83b:60031)
  • [P1] G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Sem. Géometrie des Espaces de Banach. Ecole Polytechnique 1977-78.
  • [P2] Gilles Pisier, De nouvelles caractérisations des ensembles de Sidon, Mathematical analysis and applications, Part B, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 685–726 (French, with English summary). MR 634264 (82m:43011)
  • [R] Daniel Rider, Randomly continuous functions and Sidon sets, Duke Math. J. 42 (1975), no. 4, 759–764. MR 0387965 (52 #8802)
  • [RP1] Luis Rodríguez-Piazza, Caractérisation des ensembles 𝑝-Sidon p.s, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 237–240 (French, with English summary). MR 907951 (88h:43005)
  • [RP2] L. Rodríguez-Piazza, Rango y propriedas de medidas vectoriales. Conjuntos p-Sidon p.s., Thesis. Universidad de Sevilla. 1991.
  • [W] Gordon S. Woodward, 𝑝-Sidon sets and a uniform property, Indiana Univ. Math. J. 25 (1976), no. 10, 995–1003. MR 0422997 (54 #10981)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A46

Retrieve articles in all journals with MSC (2000): 43A46


Additional Information

P. Lefèvre
Affiliation: Université d’Artois, Faculté Jean Perrin, rue Jean Souvraz S.P. 18 62307 Lens cedex, France
Email: lefevre@euler.univ-artois.fr

L. Rodríguez-Piazza
Affiliation: Universidad de Sevilla, Faculdad de Matematica, Apdo 1160, 41080 Sevilla, Spain
Email: piazza@us.es

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06714-X
PII: S 0002-9939(02)06714-X
Keywords: $p$-Sidon-ps, $p$-Rider set, $q$-Sidon set, quasi-independent sets, random Fourier series
Received by editor(s): June 21, 2001
Received by editor(s) in revised form: January 24, 2002
Published electronically: October 1, 2002
Communicated by: Andreas Seeger
Article copyright: © Copyright 2002 American Mathematical Society