Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$p$-Rider sets are $q$-Sidon sets


Authors: P. Lefèvre and L. Rodríguez-Piazza
Journal: Proc. Amer. Math. Soc. 131 (2003), 1829-1838
MSC (2000): Primary 43A46
DOI: https://doi.org/10.1090/S0002-9939-02-06714-X
Published electronically: October 1, 2002
MathSciNet review: 1955271
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to prove that for every $p<{\frac43}$, every $p$-Rider set is a $q$-Sidon set for all $q>{\frac p{2-p}}\cdot$ This gives some positive answers for the union problem of $p$-Sidon sets. We also obtain some results on the behavior of the Fourier coefficient of a measure with spectrum in a $p$-Rider set.


References [Enhancements On Off] (What's this?)

  • [B] R. Blei, Sidon partitions and $p$-Sidon sets, Pacific J. Math 65 (1976), 307-313. MR 56:16261
  • [BP] M. Bozejko, T. Pytlik, Some types of lacunary Fourier series, Colloq. Math. 25 (1972), 117-124. MR 46:4106
  • [DG] M. Déchamps-Gondim, Compacts associés aux ensembles lacunaires, les ensembles de Sidon et propriétés du majorant dans les espaces de Banach, Thèse d'état-Orsay (1983).
  • [FP] J. Fournier-L. Pigno, Analytic and arithmetic properties of thin sets, Pacific J. Math. 105 (1983) 115-141. MR 84h:43013
  • [JW] G. Johnson, G. Woodward, On $p$-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167. MR 50:2821
  • [K] J.P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag (1970). MR 43:801
  • [L] P. Lefèvre, Measures and lacunary sets, Studia Math. 133(2) (1999), 145-161. MR 2000a:42007
  • [LLQR] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Lacunary sets and function spaces with finite cotype, J. Functional Analysis 188 (2002), 272-291.
  • [LQR] D. Li, H. Queffélec, L. Rodríguez-Piazza, Some new thin sets of integers in harmonic analysis, To appear in J. Analyse Math.
  • [M] J.F. Méla, Mesures $\varepsilon$ idempotentes de norme bornée, Studia. Math. 72 (1982), 131-149. MR 84a:43007
  • [MP] M. Marcus, G. Pisier, Random Fourier series with applications to harmonic analysis, Annals of Math Studies, 101, Princeton University Press, 1981. MR 83b:60031
  • [P1] G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Sem. Géometrie des Espaces de Banach. Ecole Polytechnique 1977-78.
  • [P2] G. Pisier, De nouvelles caractérisations des ensembles de Sidon. Math. Analysis and Appl., Academic Press, 1981. MR 82m:43011
  • [R] D. Rider, Randomly continuous functions and Sidon sets, Duke Math. J. 42 (1975), 759-764. MR 52:8802
  • [RP1] L. Rodríguez-Piazza, Caractérisations des ensembles p-Sidon p.s., C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 237-240. MR 88h:43005
  • [RP2] L. Rodríguez-Piazza, Rango y propriedas de medidas vectoriales. Conjuntos p-Sidon p.s., Thesis. Universidad de Sevilla. 1991.
  • [W] G. Woodward, $p$-Sidon sets, Indiana Univ. Math. J. 25 (1976), 995-1003. MR 54:10981

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A46

Retrieve articles in all journals with MSC (2000): 43A46


Additional Information

P. Lefèvre
Affiliation: Université d’Artois, Faculté Jean Perrin, rue Jean Souvraz S.P. 18 62307 Lens cedex, France
Email: lefevre@euler.univ-artois.fr

L. Rodríguez-Piazza
Affiliation: Universidad de Sevilla, Faculdad de Matematica, Apdo 1160, 41080 Sevilla, Spain
Email: piazza@us.es

DOI: https://doi.org/10.1090/S0002-9939-02-06714-X
Keywords: $p$-Sidon-ps, $p$-Rider set, $q$-Sidon set, quasi-independent sets, random Fourier series
Received by editor(s): June 21, 2001
Received by editor(s) in revised form: January 24, 2002
Published electronically: October 1, 2002
Communicated by: Andreas Seeger
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society