The product of a nonsymmetric Jack polynomial with a linear function
Author:
Dan Marshall
Journal:
Proc. Amer. Math. Soc. 131 (2003), 18171827
MSC (2000):
Primary 33C45; Secondary 05A10
Published electronically:
October 1, 2002
MathSciNet review:
1955270
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper a decomposition in terms of the nonsymmetric Jack polynomials is given for the product of any nonsymmetric Jack polynomial with . This decomposition generalises a recurrence formula satisfied by single variable orthogonal polynomials on the unit circle. The decomposition also allows the evaluation of the generalised binomial coefficients associated with the nonsymmetric Jack polynomials for .
 1.
T.
H. Baker and P.
J. Forrester, Nonsymmetric Jack polynomials and integral
kernels, Duke Math. J. 95 (1998), no. 1,
1–50. MR
1646546 (2000b:33006), http://dx.doi.org/10.1215/S0012709498095011
 2.
T.
H. Baker and P.
J. Forrester, Symmetric Jack polynomials from nonsymmetric
theory, Ann. Comb. 3 (1999), no. 24,
159–170. On combinatorics and statistical mechanics. MR 1772343
(2002e:33021), http://dx.doi.org/10.1007/BF01608781
 3.
Ivan
Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math.
Res. Notices 10 (1995), 483–515. MR 1358032
(97f:33032), http://dx.doi.org/10.1155/S1073792895000341
 4.
P. Forrester, Loggases and random matrices, in preparation.
 5.
Friedrich
Knop, Symmetric and nonsymmetric quantum Capelli polynomials,
Comment. Math. Helv. 72 (1997), no. 1, 84–100.
MR
1456318 (98m:05204), http://dx.doi.org/10.4171/CMH/72.1.7
 6.
Friedrich
Knop and Siddhartha
Sahi, Difference equations and symmetric polynomials defined by
their zeros, Internat. Math. Res. Notices 10 (1996),
473–486. MR 1399412
(99d:05086), http://dx.doi.org/10.1155/S1073792896000311
 7.
Friedrich
Knop and Siddhartha
Sahi, A recursion and a combinatorial formula for Jack
polynomials, Invent. Math. 128 (1997), no. 1,
9–22. MR
1437493 (98k:33040), http://dx.doi.org/10.1007/s002220050134
 8.
Eric
M. Opdam, Harmonic analysis for certain representations of graded
Hecke algebras, Acta Math. 175 (1995), no. 1,
75–121. MR
1353018 (98f:33025), http://dx.doi.org/10.1007/BF02392487
 9.
Siddhartha
Sahi, The spectrum of certain invariant differential operators
associated to a Hermitian symmetric space, Lie theory and geometry,
Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994,
pp. 569–576. MR 1327549
(96d:43013)
 10.
Siddhartha
Sahi, Interpolation, integrality, and a generalization of
Macdonald’s polynomials, Internat. Math. Res. Notices
10 (1996), 457–471. MR 1399411
(99j:05189b), http://dx.doi.org/10.1155/S107379289600030X
 11.
Siddhartha
Sahi, A new scalar product for nonsymmetric Jack polynomials,
Internat. Math. Res. Notices 20 (1996), 997–1004. MR 1422372
(98g:05154), http://dx.doi.org/10.1155/S107379289600061X
 12.
Siddhartha
Sahi, The binomial formula for nonsymmetric Macdonald
polynomials, Duke Math. J. 94 (1998), no. 3,
465–477. MR 1639523
(99k:33041), http://dx.doi.org/10.1215/S0012709498094194
 13.
Richard
P. Stanley, Some combinatorial properties of Jack symmetric
functions, Adv. Math. 77 (1989), no. 1,
76–115. MR
1014073 (90g:05020), http://dx.doi.org/10.1016/00018708(89)900157
 14.
Gábor
Szegő, Orthogonal polynomials, 4th ed., American
Mathematical Society, Providence, R.I., 1975. American Mathematical
Society, Colloquium Publications, Vol. XXIII. MR 0372517
(51 #8724)
 1.
 T.H. Baker and P.J. Forrester, Nonsymmetric Jack polynomials and integral kernels, Duke Math. J. 95 (1998), 150.MR 2000b:33006
 2.
 , Symmetric Jack polynomials from nonsymmetric theory, Ann. Comb. 3 (1999), 159170. MR 2002e:33021
 3.
 I. Cherednik, Nonsymmetric Macdonald polynomials, Int. Math. Res. Not. 10 (1995), 483515. MR 97f:33032
 4.
 P. Forrester, Loggases and random matrices, in preparation.
 5.
 F. Knop, Symmetric and nonsymmetric quantum Capelli polynomials, Comment. Math. Helv. 72 (1997), 84100. MR 98m:05204
 6.
 F. Knop and S. Sahi, Difference equations and symmetric polynomials defined by their zeros, Int. Math. Res. Not. 10 (1996), 473486. MR 99d:05086
 7.
 , A recursion and combinatorial formula for the Jack polynomials, Invent. Math. 128 (1997), 922. MR 98k:33040
 8.
 E. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta. Math. 175 (1995), 75121. MR 98f:33025
 9.
 S. Sahi, The spectrum of certain invariant differential operators associated to a Hermitian symmetric space, Lie Theory and Geometry: in honour of B. Konstant (V. Gaillemin, J. L. Brylinski, R. Brylinski and V. Kac, eds.), Prog. Math, vol. 123, Birkhauser, Boston, 1994, pp. 569576. MR 96d:43013
 10.
 , Interpolation, integrality, and a generalization of Macdonald's polynomials, Int. Math. Res. Not. 10 (1996), 457471. MR 99j:05189b
 11.
 , A new scalar product for the nonsymmetric Jack polynomials, Int. Math. Res. Not. 20 (1996), 9971004. MR 98g:05154
 12.
 , The binomial formula for nonsymmetric Macdonald polynomials, Duke. Math. J. 94 (1998), 465477. MR 99k:33041
 13.
 R. P. Stanley, Some combinatorial properties of Jack symmetric functions, Advances in Math. 77 (1989), 76115. MR 90g:05020
 14.
 G. Szegö, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence R.I., 1975. MR 51:8724
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
33C45,
05A10
Retrieve articles in all journals
with MSC (2000):
33C45,
05A10
Additional Information
Dan Marshall
Affiliation:
School of Humanities, Australian National University, Canberra, 0200, Australia
Email:
Dan.Marshall@anu.edu.au
DOI:
http://dx.doi.org/10.1090/S0002993902067163
PII:
S 00029939(02)067163
Keywords:
Jack polynomials,
Pieri formula,
generalized binomial coefficients
Received by editor(s):
May 14, 2001
Received by editor(s) in revised form:
December 7, 2001, January 11, 2002, and January 22, 2002
Published electronically:
October 1, 2002
Additional Notes:
The author thanks Peter Forrester for useful discussions and for bringing to his attention the paper by Knop and Sahi, and an anonymous referee for helpful comments. This work was supported by an Australian Postgraduate Award.
Communicated by:
John R. Stembridge
Article copyright:
© Copyright 2002
American Mathematical Society
