On sampling theory associated with the resolvents of singular Sturm-Liouville problems

Author:
M. H. Annaby

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1803-1812

MSC (2000):
Primary 41A05, 34B05, 94A20

DOI:
https://doi.org/10.1090/S0002-9939-02-06727-8

Published electronically:
October 2, 2002

MathSciNet review:
1955268

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the sampling theory associated with resolvents of eigenvalue problems. We introduce sampling representations for integral transforms whose kernels are Green's functions of singular Sturm-Liouville problems provided that the singular points are in the limit-circle situation, extending the results obtained in the regular problems.

**1.**M.H. Annaby and M.A. El-Sayed,*Kramer-type sampling theorems associated with Fredholm integral operators,*Methods Appl. Anal.**2**(1995), 76-91. MR**96h:45011****2.**M.H. Annaby and A.I. Zayed,*On the use of Green's function in sampling theory,*J. Integral Equations and Applications,**10**(1998), 117-139. MR**99g:34061****3.**M.H. Annaby and G. Freiling,*Sampling expansions associated with Kamke problems,*Math. Z.**234**(2000), 163-189. MR**2001b:34024****4.**M.H. Annaby and P.L. Butzer,*On sampling associated with singular Sturm-Liouville eigenvalue problems: the limit-circle case,*to appear.**5.**P.L. Butzer and G. Nasri-Roudsari,*Kramer's sampling theorem in signal analysis and its role in mathematics.*In: Image Processing, Mathematical Methods and Applications, The Institute of Mathematics and its Applications, New series, No 61, Clarendon Press, Oxford 1997, 49-95.**6.**J.A. Cochran, The Analysis of Linear Integral Equations, McGraw-Hill, New York, 1972. MR**56:6301****7.**E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. MR**16:1022b****8.**N. Dunford and J.T. Schwarz, Linear Operators, II, Wiley, New York, 1963. MR**32:6181****9.**W.N. Everitt, G. Schöttler and P. L. Butzer,*Sturm-Liouville boundary value problems and Lagrange interpolation series,*Rend. Math. Appl.**14**(1994), 87-126. MR**95j:34040****10.**W.N. Everitt,*A note on the self-adjoint domains of second-order differential equations,*Quart. J. Math.**13**(1963), 41-45. MR**26:1534****11.**C.T. Fulton, Parametrizations of Titchmarsh's ' '-Function in The Limit-Circle Case, Doctoral thesis, RWTH-Aachen, 1973.**12.**C.T. Fulton,*Parametrizations of Titchmarsh's -function in the limit-circle case,*Trans. Amer. Math. Soc.**229**(1977), 51-63. MR**56:8950****13.**C.T. Fulton,*Expansions in Legendre functions,*Quart. J. Math.**33**(1982), 215-222. MR**83e:34030****14.**A. Haddad, K. Yao and J. Thomas,*General methods for the derivation of the sampling theorems,*IEEE Trans. Inf. Theory,**IT-13**(1967), 227-230.**15.**H.P. Kramer,*A generalized sampling theorem,*J. Math. Phys.**38**(1959), 68-72. MR**21:2550****16.**N.N. Lebedev, Special Functions and Their Applications, Prentice Hall, Englewood Cliffs, N.J., 1965. MR**30:4988****17.**M.A. Naimark, Linear Differential Operators I,*Elementary theory of linear differential operators*, Frederick Ungar Publishing, New York, 1967. MR**35:6885****18.**I. Stakgold, Green's Functions and Boundary Value Problems, second edition, Wiley, New York, 1998. MR**99a:35002****19.**E. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations Part I, Clarendon Press, Oxford, 1962. MR**31:426****20.**A.I. Zayed, G. Hinsen and P.L. Butzer,*On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm-Liouville problems,*SIAM J. Appl. Math.**50**(1990), 893-909. MR**91c:94011****21.**A.I. Zayed,*On Kramer's sampling theorem associated with general Sturm-Liouville problems and Lagrange interpolation,*SIAM J. Appl. Math.**51**(1991), 575-604. MR**92b:34038****22.**A.I. Zayed,*A new role of Green's function in interpolation and sampling theory,*J. Math. Anal. Appl.**175**(1993), 222-238. MR**94d:41011****23.**A.I. Zayed, Advances in Shannon's Sampling Theory, CRC Press, Boca Raton, 1993. MR**95f:94008****24.**A.I. Zayed,*Sampling in a Hilbert space,*Proc. Amer. Math. Soc.**124**(1996), 3767-3776. MR**97b:41007**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
41A05,
34B05,
94A20

Retrieve articles in all journals with MSC (2000): 41A05, 34B05, 94A20

Additional Information

**M. H. Annaby**

Affiliation:
Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

Address at time of publication:
Department of Mathematics, Arizona State University, P.O. Box 871804, Tempe, Arizona 85287-1804

Email:
mnaby@math-sci.cairo.eun.eg, annaby@math.la.asu.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06727-8

Keywords:
Sampling theory,
singular Sturm-Liouville problems,
Green's function,
resolvent kernels,
Legendre and Bessel functions

Received by editor(s):
November 15, 2000

Received by editor(s) in revised form:
January 18, 2002

Published electronically:
October 2, 2002

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2002
American Mathematical Society