Invariant complementation and projectivity in the Fourier algebra
Author:
Peter J. Wood
Journal:
Proc. Amer. Math. Soc. 131 (2003), 18811890
MSC (2000):
Primary 43A30; Secondary 46L07
Published electronically:
November 4, 2002
MathSciNet review:
1955277
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we study the ideals in the Fourier algebra of a locally compact group which are complemented by an invariant projection. In particular we show that when is discrete, every ideal which is complemented by a completely bounded projection must be invariantly complemented. Perhaps surprisingly, this result does not depend of the amenability of the group or the algebra, but instead relies on the operator biprojectivity of the Fourier algebra for a discrete group.
 1.
David
P. Blecher, The standard dual of an operator space, Pacific J.
Math. 153 (1992), no. 1, 15–30. MR 1145913
(93d:47083)
 2.
P.
C. Curtis Jr. and R.
J. Loy, The structure of amenable Banach algebras, J. London
Math. Soc. (2) 40 (1989), no. 1, 89–104. MR 1028916
(90k:46114), http://dx.doi.org/10.1112/jlms/s240.1.89
 3.
Edward
G. Effros and ZhongJin
Ruan, On the abstract characterization of
operator spaces, Proc. Amer. Math. Soc.
119 (1993), no. 2,
579–584. MR 1163332
(94g:46019), http://dx.doi.org/10.1090/S00029939199311633324
 4.
Pierre
Eymard, L’algèbre de Fourier d’un groupe
localement compact, Bull. Soc. Math. France 92
(1964), 181–236 (French). MR 0228628
(37 #4208)
 5.
Barry
Edward Johnson, Cohomology in Banach algebras, American
Mathematical Society, Providence, R.I., 1972. Memoirs of the American
Mathematical Society, No. 127. MR 0374934
(51 #11130)
 6.
B.
E. Johnson, Nonamenability of the Fourier algebra of a compact
group, J. London Math. Soc. (2) 50 (1994),
no. 2, 361–374. MR 1291743
(95i:43001), http://dx.doi.org/10.1112/jlms/50.2.361
 7.
A.
Ya. Khelemskiĭ, Flat Banach modules and amenable
algebras, Trudy Moskov. Mat. Obshch. 47 (1984),
179–218, 247 (Russian). MR 774950
(86g:46108)
 8.
A.
Ya. Helemskii, The homology of Banach and topological
algebras, Mathematics and its Applications (Soviet Series),
vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated
from the Russian by Alan West. MR 1093462
(92d:46178)
 9.
D.
J. Newman, The nonexistence of projections from
𝐿¹ to 𝐻¹, Proc. Amer.
Math. Soc. 12
(1961), 98–99. MR 0120524
(22 #11276), http://dx.doi.org/10.1090/S0002993919610120524X
 10.
Haskell
P. Rosenthal, Projections onto translationinvariant subspaces of
𝐿^{𝑝}(𝐺), Mem. Amer. Math. Soc. No.
63 (1966), 84. MR 0211198
(35 #2080)
 11.
ZhongJin
Ruan, The operator amenability of 𝐴(𝐺), Amer.
J. Math. 117 (1995), no. 6, 1449–1474. MR 1363075
(96m:43001), http://dx.doi.org/10.2307/2375026
 12.
Walter
Rudin, Projections on invariant
subspaces, Proc. Amer. Math. Soc. 13 (1962), 429–432. MR 0138012
(25 #1460), http://dx.doi.org/10.1090/S00029939196201380124
 13.
Peter
J. Wood, Complemented ideals in the Fourier
algebra of a locally compact group, Proc. Amer.
Math. Soc. 128 (2000), no. 2, 445–451. MR 1616589
(2000c:43004), http://dx.doi.org/10.1090/S0002993999049898
 14.
, Homological Algebra in Operator Spaces with Applications to Harmonic Analysis, Ph.D. Thesis, University of Waterloo, 1999.
 15.
, The operator biprojectivity of the Fourier algebra, Can. J. Math (to appear).
 1.
 D.P Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), 1530. MR 93d:47083
 2.
 P.C. Curtis and R.J. Loy, Amenable Banach algebras, J. London Math. Soc. 40 (1989) 89104. MR 90k:46114
 3.
 E.G. Effros and ZJ Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119 (1990), 579584. MR 94g:46019
 4.
 P. Eymard, L'algebre de Fourier d'un groupe localemant compact, Bull. Soc. Math. France 92 (1964), 181236. MR 37:4208
 5.
 B. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127 (1972). MR 51:11130
 6.
 , Nonamenability of the Fourier algebra for compact groups, J. London Math. Soc. 50 (1994), 361374. MR 95i:43001
 7.
 A. Ya. Khelemskii, Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc. (1984); Amer. Math. Soc. Translations (1985), 199224. MR 86g:46108
 8.
 , The Homology of Banach and Topological Algebras, Mathematics and its Applications (Soviet Series) 41, Kluwer Academic Publishers, 1986. MR 92d:46178
 9.
 D.J. Newman, The nonexistence of projections from to , Proc. Amer. Math. Soc. 12 (1961), 9899. MR 22:11276
 10.
 H.P. Rosenthal, Projections onto translation invariant subspaces of , Mem. Amer. Math. Soc. 63 (1966), 84pp. MR 35:2080
 11.
 ZJ Ruan, The operator amenability of , Amer. J. Math. 117 (1995), 14491476. MR 96m:43001
 12.
 W. Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429432. MR 25:1460
 13.
 P.J. Wood, Complemented ideals in the Fourier algebra of a locally compact group, Proc. Amer. Math. Soc. 128 No. 2 (2000), 445451. MR 2000c:43004
 14.
 , Homological Algebra in Operator Spaces with Applications to Harmonic Analysis, Ph.D. Thesis, University of Waterloo, 1999.
 15.
 , The operator biprojectivity of the Fourier algebra, Can. J. Math (to appear).
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
43A30,
46L07
Retrieve articles in all journals
with MSC (2000):
43A30,
46L07
Additional Information
Peter J. Wood
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email:
pwood@uwaterloo.ca
DOI:
http://dx.doi.org/10.1090/S0002993902067424
PII:
S 00029939(02)067424
Keywords:
Fourier algebra,
operator space,
projective,
complemented ideals
Received by editor(s):
February 15, 2001
Received by editor(s) in revised form:
February 8, 2002
Published electronically:
November 4, 2002
Communicated by:
Andreas Seeger
Article copyright:
© Copyright 2002
American Mathematical Society
