Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$\cos\pi\lambda$ again


Author: P. C. Fenton
Journal: Proc. Amer. Math. Soc. 131 (2003), 1875-1880
MSC (2000): Primary 30D15
DOI: https://doi.org/10.1090/S0002-9939-02-06750-3
Published electronically: November 6, 2002
MathSciNet review: 1955276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if, for an entire function,

\begin{displaymath}\liminf_{r\to\infty} \logEM(r)/r^{\lambda} = 0 \end{displaymath}

where $0< \lambda <1$, then

\begin{displaymath}\limsup_{r\to\infty}(\log m(r)-\cos\pi\lambda\log M(r))/\log r = \infty. \end{displaymath}

In the proof, the zeros of the function are redistributed to minimize the large values of $\log m(r) -\cos\pi\lambda\log M(r)$.


References [Enhancements On Off] (What's this?)

  • 1. Albert Baernstein II, A generalization of the cos$\pi\rho$ theorem, Trans. Amer. Math. Soc. 193 (1974), 181-97. MR 49:9207
  • 2. R.P. Boas, Entire Functions (Academic Press, 1954). MR 16:914f
  • 3. E.T. Copson, Theory of Functions of a Complex Variable (Oxford, 1935).
  • 4. P.C. Fenton, A min-max theorem for sums of translates of a function, J. Math. Anal. App. 244 (2000), 214-222. MR 2001a:26007
  • 5. Bo Kjellberg, On the minimum modulus of entire functions of lower order less than one, Math. Scand. 8 (1960), 189-97. MR 23:A3264
  • 6. Bo Kjellberg, A theorem on the minimum modulus of entire functions, Math. Scand. 12 (1963), 5-11. MR 28:3158

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30D15

Retrieve articles in all journals with MSC (2000): 30D15


Additional Information

P. C. Fenton
Affiliation: Department of Mathematics, University of Otago, P.O. Box 56, Dunedin, New Zealand

DOI: https://doi.org/10.1090/S0002-9939-02-06750-3
Received by editor(s): February 7, 2002
Published electronically: November 6, 2002
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society