Global existence for the critical generalized KdV equation

Authors:
G. Fonseca, F. Linares and G. Ponce

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1847-1855

MSC (2000):
Primary 35Q53

Published electronically:
November 6, 2002

MathSciNet review:
1955273

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss results regarding global existence of solutions for the critical generalized Korteweg-de Vries equation,

The theory established shows the existence of global solutions in Sobolev spaces with order below the one given by the energy space , i.e. solutions corresponding to data , , with , where is the solitary wave solution of the equation.

**1.**Björn Birnir, Carlos E. Kenig, Gustavo Ponce, Nils Svanstedt, and Luis Vega,*On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations*, J. London Math. Soc. (2)**53**(1996), no. 3, 551–559. MR**1396718**, 10.1112/jlms/53.3.551**2.**J. Bourgain,*Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity*, Internat. Math. Res. Notices**5**(1998), 253–283. MR**1616917**, 10.1155/S1073792898000191**3.**J. Colliander, G. Staffilani, and H. Takaoka,*Global wellposedness for KdV below 𝐿²*, Math. Res. Lett.**6**(1999), no. 5-6, 755–778. MR**1739230**, 10.4310/MRL.1999.v6.n6.a13**4.**J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,*Sharp global well-posedness for KdV and modified KdV on**and*, preprint.**5.**German Fonseca, Felipe Linares, and Gustavo Ponce,*Global well-posedness for the modified Korteweg-de Vries equation*, Comm. Partial Differential Equations**24**(1999), no. 3-4, 683–705. MR**1683054**, 10.1080/03605309908821438**6.**A. Grünrock,*A bilinear Airy-estimate with applications to gKdV-3*, preprint.**7.**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*Global well-posedness for semi-linear wave equations*, Comm. Partial Differential Equations**25**(2000), no. 9-10, 1741–1752. MR**1778778**, 10.1080/03605300008821565**8.**Carlos E. Kenig, Gustavo Ponce, and Luis Vega,*Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle*, Comm. Pure Appl. Math.**46**(1993), no. 4, 527–620. MR**1211741**, 10.1002/cpa.3160460405**9.**Hideo Takaoka,*Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces*, Electron. J. Differential Equations (2001), No. 42, 23 pp. (electronic). MR**1836810****10.**Y. Martel and F. Merle,*Instability of solitons for the critical generalized Korteweg-de Vries equation*, Geom. Funct. Anal.**11**(2001), no. 1, 74–123. MR**1829643**, 10.1007/PL00001673**11.**Y. Martel and F. Merle,*Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation*, Annals of Math. (2)**155**(2002), 235-280.**12.**Frank Merle,*Existence of blow-up solutions in the energy space for the critical generalized KdV equation*, J. Amer. Math. Soc.**14**(2001), no. 3, 555–578 (electronic). MR**1824989**, 10.1090/S0894-0347-01-00369-1**13.**Hartmut Pecher,*Global well-posedness below energy space for the 1-dimensional Zakharov system*, Internat. Math. Res. Notices**19**(2001), 1027–1056. MR**1857386**, 10.1155/S1073792801000496**14.**Michael I. Weinstein,*Lyapunov stability of ground states of nonlinear dispersive evolution equations*, Comm. Pure Appl. Math.**39**(1986), no. 1, 51–67. MR**820338**, 10.1002/cpa.3160390103

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35Q53

Retrieve articles in all journals with MSC (2000): 35Q53

Additional Information

**G. Fonseca**

Affiliation:
Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia

Email:
gfonseca@matematicas.unal.edu.co

**F. Linares**

Affiliation:
Instituto de Matemática Pura e Aplicada, 22460-320, Rio de Janeiro, Brazil

Email:
linares@impa.br

**G. Ponce**

Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106

Email:
ponce@math.ucsb.edu

DOI:
https://doi.org/10.1090/S0002-9939-02-06871-5

Received by editor(s):
January 30, 2002

Published electronically:
November 6, 2002

Additional Notes:
The first author was partially supported by DIB-Universidad Nacional de Colombia

The second author was partially supported by CNP-q Brazil

The third author was partially supported by an NSF grant

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2002
American Mathematical Society