TWO $F_{\sigma\delta}$ IDEALS

ILIJAS FARAH AND SŁAWOMIR SOLEcki

(Communicated by Alan Dow)

Abstract. We find two $F_{\sigma\delta}$ ideals on \mathbb{N} neither of which is F_{σ} whose quotient Boolean algebras are homogeneous but nonisomorphic. This solves a problem of Just and Krawczyk (1984).

We consider Boolean algebras of the form $\mathcal{P}(\mathbb{N})/\mathcal{I}$, where \mathcal{I} is an ideal on \mathbb{N} containing the ideal Fin of finite sets. In [3] Just and Krawczyk formulated several conditions on the ideals \mathcal{I}, \mathcal{J} that guarantee their quotients $\mathcal{P}(\mathbb{N})/\mathcal{I}$ and $\mathcal{P}(\mathbb{N})/\mathcal{J}$ to be isomorphic. By identifying sets of integers with their characteristic functions, we equip $\mathcal{P}(\mathbb{N})$ with the Cantor-space topology. We can therefore assign topological complexity to the ideals of sets of integers. In particular, we have $F_{\sigma}, F_{\sigma\delta}, \text{Borel}$, and so on, ideals on \mathbb{N}.

Just and Krawczyk have proved that the Continuum Hypothesis implies that
1. all quotients over F_{σ} ideals are pairwise isomorphic, and
2. the quotient over the ideal of asymptotic density zero sets, $Z_0 = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} |A \cap n|/n = 0 \}$, is isomorphic to the quotient over the ideal of logarithmic density zero sets, $Z_{\log} = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} (\sum_{i \in A \cap n} 1/i)/(\sum_{i < n} 1/i) = 0 \}$.

They have also introduced a class of $E\!U$-ideals that contains both Z_0 and Z_{\log} and proved that under CH all quotients over these ideals are homogeneous and pairwise isomorphic. (A Boolean algebra \mathcal{B} is homogeneous if it is isomorphic to $\mathcal{B}_A = \{ B \in \mathcal{B} : B \leq A \}$, for every $A \in \mathcal{B} \setminus \{ 0_{\mathcal{B}} \}$.) Motivated by this result, Just and Krawczyk posed the following problem.

Problem 1 ([3 Problem C]). Is it true that if \mathcal{I}, \mathcal{J} are $F_{\sigma\delta}$ and not F_{σ} and both $\mathcal{P}(\mathbb{N})/\mathcal{I}$ and $\mathcal{P}(\mathbb{N})/\mathcal{J}$ are homogeneous, then $\mathcal{P}(\mathbb{N})/\mathcal{I} \approx \mathcal{P}(\mathbb{N})/\mathcal{J}$?

We will prove that this problem has a negative answer. We will also prove that there is an $F_{\sigma\delta}$ ideal whose quotient is not isomorphic to a quotient over any P-ideal. (Recall that \mathcal{I} is a P-ideal if for every sequence $A_n (n \in \mathbb{N})$ in \mathcal{I} there is an $A \in \mathcal{I}$ such that $A_n \setminus A$ is finite for all n.)
Sequential topology. If B is a σ-complete Boolean algebra, one can define a topology on B as follows. A sequence A_n ($n \in \mathbb{N}$) algebraically converges to A if:

$$\lim_{m \to \infty} \bigwedge_{n=m}^{\infty} A_n = \bigwedge_{n=1}^{\infty} A_n.$$

A subset of B is closed if it is closed under taking algebraic limits of sequences in it. Open sets are complements of closed sets. See [4] and [1] for more on this topology on complete Boolean algebras.

It is known that quotients over analytic ideals (or more generally, over ideals that have the property of Baire) are never σ-complete (see [3]). If B is a (not necessarily σ-complete) Boolean algebra, define a topology τ on B as follows. A sequence A_n ($n \in \mathbb{N}$) algebraically converges to A if:

1. For all m, $B_m = \bigwedge_{n=m}^{\infty} A_n$ exists.
2. For all m, $C_m = \bigvee_{n=m}^{\infty} A_n$ exists.
3. Both $\bigwedge_{m=1}^{\infty} C_m$ and $\bigvee_{m=1}^{\infty} B_m$ exist and are equal to A.

A subset of B is τ-closed if it is closed under taking algebraic limits of sequences in it. τ-open sets are the complements of τ-closed sets.

Proposition 2. If \mathcal{I} is an analytic P-ideal, then there is a complete metric on $\mathcal{P}(\mathbb{N})/\mathcal{I}$ that induces τ.

Proof. Let ϕ be a lower semicontinuous submeasure such that $\mathcal{I} = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \phi(A \setminus n) = 0 \}$, as guaranteed by [5]. Define a metric d_ϕ on $\mathcal{P}(\mathbb{N})/\mathcal{I}$ by

$$d_\phi([A]_\mathcal{I}, [B]_\mathcal{I}) = \limsup_n \phi((A \Delta B) \setminus n).$$

This metric is complete (see [2] Lemma 1.3.3). It is easily checked that a sequence is d_ϕ-convergent if and only if it is τ-convergent. □

Theorem 3. There are two ideals \mathcal{I} and \mathcal{J} such that

1. both \mathcal{I} and \mathcal{J} are $F_{\sigma, \delta}$ and neither \mathcal{I} nor \mathcal{J} is F_σ,
2. both quotient algebras over \mathcal{I} and \mathcal{J} are homogeneous,
3. these quotient algebras are not isomorphic.

Proof. We will take \mathcal{I} and \mathcal{J} to be the following ideals on $\mathbb{Q} \cap [0, 1]$:

- $\text{NWD}(\mathbb{Q}) = \{ A \subseteq \mathbb{Q} \cap [0, 1] : A \text{ is nowhere dense} \}$,
- $\text{NULL}(\mathbb{Q}) = \{ A \subseteq \mathbb{Q} \cap [0, 1] : \overline{A} \text{ is of Lebesgue measure 0} \}$.

(The closure \overline{A} is taken in \mathbb{R}.) To see that $\text{NWD}(\mathbb{Q})$ is $F_{\sigma, \delta}$, enumerate the basis of \mathbb{Q} as $\{ U_n \}$, \mathbb{Q} as $\{ q_n \}$, and the basis of $\mathbb{Q} \cap U_m$ as $\{ V_{mn} \}$. The set

$$K_m = \{ A \subseteq \mathbb{Q} : (\exists n) A \cap V_{mn} \subseteq \{ q_1, \ldots, a_n \} \}$$

is hereditary and F_{σ}, and $A \in K_m$ if and only if $A \cap U_m$ is nowhere dense. Therefore, $\text{NWD}(\mathbb{Q}) = \bigcap_m K_m$.

To see that $\text{NULL}(\mathbb{Q})$ is $F_{\sigma, \delta}$, for each n enumerate all finite unions of rational intervals of measure $\leq 1/n$ and proceed as above, using the compactness of $[0, 1]$.

Neither of these ideals is F_σ.

Ideals \mathcal{I} and \mathcal{J} are Rudin–Keisler isomorphic if there are $A \in \mathcal{I}$, $B \in \mathcal{J}$, and a bijection h between $\mathbb{N} \setminus B$ and $\mathbb{N} \setminus A$ such that for all $X \subseteq \mathbb{N} \setminus A$ we have

$$X \in \mathcal{I} \iff h^{-1}(X) \in \mathcal{J}.$$
Claim 1. The quotient $\mathcal{P}(\mathbb{Q})/\text{NWD}(\mathbb{Q})$ is homogeneous.

Proof. Let A be a positive set. Then the interior B of \overline{A} is nonempty, hence $B \cap A$ is dense in itself. Thus $B \cap A$ is homeomorphic to \mathbb{Q}, and $A \setminus B$ is nowhere dense. The homeomorphism is a Rudin–Keisler isomorphism between $\text{NWD}(\mathbb{Q})$ and $\text{NWD}(\mathbb{Q}) \upharpoonright A$, and it induces an isomorphism between $\mathcal{P}(\mathbb{Q})/\text{NWD}(\mathbb{Q})$ and $\mathcal{P}(A)/\text{NWD}(\mathbb{Q}) \upharpoonright A$. □

Claim 2. The quotient $\mathcal{P}(\mathbb{Q})/\text{NULL}(\mathbb{Q})$ is homogeneous.

Proof. As in the proof of Claim 1, we need to prove that for every positive A the ideals $\text{NULL}(\mathbb{Q})$ and $\text{NULL}(\mathbb{Q}) \upharpoonright A$ are Rudin–Keisler isomorphic. We shall prove this in two steps.

If A, B are two subsets of $\mathbb{Q} \cap [0, 1]$ with the same closure, there is a bijection $f: A \to B$ such that $\lambda(f(X)) = \lambda(X)$ for all $X \subseteq A$. Let $A = \{a_i : i \in \mathbb{N}\}$ and $B = \{b_i : i \in \mathbb{N}\}$ be one-to-one enumerations. Find a bijection f so that $\lim_i d(a_i, f(a_i)) = 0$, making sure that every isolated point is fixed by f. Such an f satisfies the requirements because $\overline{f(X)} = \overline{X}$ is countable for every X.

In the second step we prove that for every $K \subseteq [0, 1]$ of positive measure there is $g: K \to [0, 1]$ such that $\lambda(X) = 0$ if and only if $\lambda(g''X) = 0$ for every closed $X \subseteq K$. The function defined by

$$g(a) = \frac{\lambda([0, a] \cap K)}{\lambda(K)}$$

has the property that $\lambda(g''U) = \lambda(U)/\lambda(K)$ for every interval U. Therefore this equality holds for all Lebesgue-measurable sets, and g as required.

To conclude the proof, let $A \subseteq \mathbb{Q}$ be positive. By the above, we can find maps $g: [0, 1]$ and $f: (g'')A \to \mathbb{Q}$ such that $f \circ g$ is a Rudin–Keisler isomorphism. □

The proof of the following result is very similar to some arguments of [1].

Lemma 4. The sequential topology on $\mathcal{P}(\mathbb{Q})/\text{NWD}(\mathbb{Q})$ is not Hausdorff.

Proof. In this proof, by open we mean relatively open in \mathbb{Q} unless otherwise stated. Let us write \mathcal{I} for $\text{NWD}(\mathbb{Q})$. We claim that each open in $\mathcal{P}(\mathbb{Q})/\mathcal{I}$ set containing $[\emptyset]_\mathcal{I}$ contains $[\mathbb{Q}]_\mathcal{I}$ in its closure. Let \mathcal{D} be an open neighborhood of $[\emptyset]_\mathcal{I}$ in $\mathcal{P}(\mathbb{Q})/\mathcal{I}$.

It is straightforward to verify the following two facts about convergence in $\mathcal{P}(\mathbb{Q})/\mathcal{I}$. (The second of these facts is of a rather general nature while the first one is characteristic to $\text{NWD}(\mathbb{Q})$.)

1. If (U_n) is an increasing sequence of open sets, then $[U_n]_\mathcal{I} \to [\bigcup_n U_n]_\mathcal{I}$.
2. Let U be open (perhaps empty), $q \in \mathbb{Q}$, and let V_n be an open ball around q of radius $1/n$. Then $[U \cup V_n]_\mathcal{I} \to [U]_\mathcal{I}$.

List elements of \mathbb{Q}: q_0, q_1, q_2, \ldots. By induction, using (2), we construct a sequence of open sets (U_n) with $[U_n]_\mathcal{I} \in \mathcal{D}$ and with U_{n+1} being the union of U_n and an open ball around q_{n+1}. Then by (1), $[U_n]_\mathcal{I} \to [\bigcup U_n]_\mathcal{I} = [\mathbb{Q}]_\mathcal{I}$. □

Lemma 5. The sequential topology on $\mathcal{P}(\mathbb{Q})/\text{NULL}(\mathbb{Q})$ is Hausdorff.

Proof. Let $\lambda(A)$ be the Lebesgue measure of A. Let us write \mathcal{F} for $\text{NULL}(\mathbb{Q})$, and let $X = [x]_\mathcal{F}$, $Y = [y]_\mathcal{F}$, etc. We claim that whenever $\lim_i X_i = Y$ in $\mathcal{P}(\mathbb{Q})/\text{NULL}(\mathbb{Q})$, we have $\lim_i \lambda(x_i \Delta y) = 0$. Assume the contrary, and fix a sequence X_i converging to Y such that $\liminf_i \lambda(x_i \Delta y) = \delta > 0$. Let $B_n = \bigvee_{i \geq n} X_i$
and \(C_n = \bigwedge_{i \geq n} X_i \). Since \(B_n \geq X_n \geq C_n \) and \(B_n \geq Y \geq C_n \) for all \(n \), for every \(n \) we have either \(\lambda(b_n \setminus y) \geq \delta/2 \) or \(\lambda(y \setminus c_n) \geq \delta/2 \).

Let us assume that \(\lambda(y \setminus c_n) \geq \delta/2 \) for infinitely many \(n \).

By making small changes to these sets, we may assume \(c_1 \subseteq c_2 \subseteq c_3 \subseteq \cdots \subseteq y \).
Therefore, we have \(\lambda(y \setminus c_n) \geq \delta/2 \) for all \(n \). The set \(F = \bigcap_{n=1}^{\infty} y \setminus c_n \) has measure at least \(\delta/2 \), since \(\lambda(y \setminus c_n) \geq \delta/2 \) for all \(n \) and this is a decreasing sequence of closed subsets of \([0, 1]\).

For each \(n \) find \(s_n \in y \setminus (c_1 \cup \cdots \cup c_n) \) such that \(\inf_{a \in F} d(s_n, a) \leq 1/n \), assuring that the closure of \(x = \{ s_n : n \in \mathbb{N} \} \) includes \(F \). Then \(x \cap c_n \) is finite for all \(n \); moreover, \(x \subseteq y \), and \([x]_\mathcal{I} \neq [\emptyset]_\mathcal{I} \). Therefore, the sequence \(C_n \) does not converge to \(y \), contrary to our assumption.

Therefore, we have \(\lambda(b_n \setminus y) \geq \delta/2 \) for every \(n \). The proof that this case leads to the contradiction is identical to the above.

An easy induction on the sequential rank shows that every \(\tau \)-closed set is closed in the metric topology induced by \(\lambda \). Therefore, for \(y \subseteq Q \) and \(\varepsilon > 0 \) the set
\[
\{ [a]_\mathcal{I} : \lambda(a \cap y) < \varepsilon \}
\]
includes an open neighborhood of \([y]_\mathcal{I}\), in turn implying the space is Hausdorff. \(\square \)

Since the sequential topology is defined in algebraic terms, an isomorphism between Boolean algebras is automatically a homeomorphism. Therefore, the two quotients are not isomorphic, and this concludes the proof. \(\square \)

Note that Lemma 4 and Proposition 2 together imply

Proposition 6. The quotient \(\mathcal{P}(Q)/\text{NWD}(Q) \) is not isomorphic to \(\mathcal{P}(\mathbb{N})/\mathcal{I} \) for any analytic \(P \)-ideal \(\mathcal{I} \).

During the course of proving Lemma 5 we have proved that the sequential topology on \(\mathcal{P}(Q)/\text{NULL}(Q) \) is stronger than a metric topology. It is not difficult to see that the two topologies differ, but even more is true. If \(\mathcal{I} \) is an ideal on \([0, 1]\) that contains all singletons, define the ideal \(I(Q) \) on \(Q \cap [0, 1] \) by
\[
I(Q) = \{ A \subseteq Q \cap [0, 1] : \overline{A} \in \mathcal{I} \}.
\]
(The closure \(\overline{A} \) is taken in \(\mathbb{R} \)).

Theorem 7. If \(\mathcal{I} \) is a \(\sigma \)-ideal on \(Q \cap [0, 1] \) containing all singletons, then the sequential topology on \(\mathcal{P}(Q)/I(Q) \) is not metric. Therefore, the quotient \(\mathcal{P}(Q)/I(Q) \) is not isomorphic to \(\mathcal{P}(\mathbb{N})/\mathcal{I} \) for any analytic \(P \)-ideal \(\mathcal{I} \).

Proof. Define a sequence \(a_n \ (n \in \mathbb{N}) \) of subsets of \(Q \cap [0, 1] \) by
\[
a_{n+1} = [i/n, (i+1)/n],
\]
if \(0 \leq i < n \). Then \(\lim_{i \to \infty} \lambda(a_i) = 0 \). However, the sequence \(A_i = [a_i]_{I(Q)} \) does not converge to \([\emptyset]_{I(Q)}\) algebraically. This is because \(C_n = \bigwedge_{i \geq n} [a_i]_{I(Q)} = [\emptyset]_{I(Q)} \) and \(B_n = \bigvee_{j > n} [a_j]_{I(Q)} = [Q]_{I(Q)} \) for all \(n \).

We claim that every subsequence of \(\{ a_n \} \) has a further subsequence that converges to \([\emptyset]_{I(Q)}\). Once proved, this will imply that the topology is not metric.

For \(i \in \mathbb{N} \) let \(x_i \) and \(y_i \) be the left and right endpoints of the interval \(a_i \). For a subsequence \(a_{n_i} \ (i \in \mathbb{N}) \) we can find a subsequence \(a_{m_i} \) such that \(\lambda(a_{m_i}) < 2^{-i} \).
and \(\lim_i x_m = x \) and \(\lim_i y_m = y \) for some \(x, y \). We necessarily have \(x = y \), and therefore for \(k \in \mathbb{N} \) we have

\[
 b_k = \bigcup_{i \geq k} a_m_i = \bigcup_{i \geq k} a_m_i \cup \{ x \}.
\]

Therefore \(\lambda(b_k) < 2^{-k+1} \). Since \(b_k \supseteq b_{k+1} \) for all \(k \) and \(I \) is a \(\sigma \)-ideal, the sequence \(B_k = \bigvee_{i \geq k} [a_m_i]_{I(Q)} \) converges to \([0]_{I(Q)} \). This proves our claim and concludes the proof. \(\square \)

There are analytic ideals that are not P-ideals whose quotients are metrizable. For example, all \(F_\sigma \) ideals are of this form, because their quotients are discrete in the sequential topology (this follows from [3]).

Acknowledgments

Some of the results of this paper were proved during the MSRI workshop on the Continuum Hypothesis, June 2001. The authors would like to thank Stevo Todorcevic for suggesting that the methods of [1] may be relevant.

References

DEPARTMENT OF MATHEMATICS, CUNY, GRADUATE CENTER AND COLLEGE OF STATEN ISLAND, STATEN ISLAND, NEW YORK 10314 – AND – MATHEMATIKI INSTITUT, KNEZA MIHAILA 35, BELGRADE, SERBIA

E-mail address: ifarah@gc.cuny.edu

URL: http://www.math.csi.cuny.edu/~farah

Current address: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

E-mail address: ifarah@mathstat.yorku.ca

DEPARTMENT OF MATHEMATICS, 1409 W. GREEN STREET, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

E-mail address: ssolecki@math.uiuc.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use