Convergence rates of cascade algorithms

Author:
Rong-Qing Jia

Journal:
Proc. Amer. Math. Soc. **131** (2003), 1739-1749

MSC (2000):
Primary 39B12, 41A25, 42C40, 65D99

Published electronically:
January 15, 2003

MathSciNet review:
1955260

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider solutions of a refinement equation of the form

where is a finitely supported sequence called the refinement mask. Associated with the mask is a linear operator defined on by . This paper is concerned with the convergence of the cascade algorithm associated with , i.e., the convergence of the sequence in the -norm.

Our main result gives estimates for the convergence rate of the cascade algorithm. Let be the normalized solution of the above refinement equation with the dilation matrix being isotropic. Suppose lies in the Lipschitz space , where and . Under appropriate conditions on , the following estimate will be established:

where and is a constant. In particular, we confirm a conjecture of A. Ron on convergence of cascade algorithms.

**1.**José Barros-Neto,*An introduction to the theory of distributions*, Marcel Dekker, Inc. New York, 1973. Pure and Applied Mathematics, 14. MR**0461128****2.**C. de Boor, K. Höllig, and S. Riemenschneider,*Box splines*, Applied Mathematical Sciences, vol. 98, Springer-Verlag, New York, 1993. MR**1243635****3.**Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli,*Stationary subdivision*, Mem. Amer. Math. Soc.**93**(1991), no. 453, vi+186. MR**1079033**, 10.1090/memo/0453**4.**Di-Rong Chen, Rong-Qing Jia, and S. D. Riemenschneider,*Convergence of vector subdivision schemes in Sobolev spaces*, Appl. Comput. Harmon. Anal.**12**(2002), no. 1, 128–149. MR**1874918**, 10.1006/acha.2001.0363**5.**Wolfgang Dahmen, Nira Dyn, and David Levin,*On the convergence rates of subdivision algorithms for box spline surfaces*, Constr. Approx.**1**(1985), no. 4, 305–322. MR**891761**, 10.1007/BF01890038**6.**Sylvain Durand,*Convergence of cascade algorithms introduced by I. Daubechies*, Numer. Algorithms**4**(1993), no. 4, 307–322. MR**1226003**, 10.1007/BF02145750**7.**Bin Han and Rong-Qing Jia,*Multivariate refinement equations and convergence of subdivision schemes*, SIAM J. Math. Anal.**29**(1998), no. 5, 1177–1199. MR**1618691**, 10.1137/S0036141097294032**8.**Rong Qing Jia,*A dual basis for the integer translates of an exponential box spline*, Rocky Mountain J. Math.**23**(1993), no. 1, 223–242. MR**1212738**, 10.1216/rmjm/1181072618**9.**Rong Qing Jia,*Subdivision schemes in 𝐿_{𝑝} spaces*, Adv. Comput. Math.**3**(1995), no. 4, 309–341. MR**1339166**, 10.1007/BF03028366**10.**Rong-Qing Jia,*Shift-invariant spaces and linear operator equations*, Israel J. Math.**103**(1998), 259–288. MR**1613580**, 10.1007/BF02762276**11.**Rong-Qing Jia,*Approximation properties of multivariate wavelets*, Math. Comp.**67**(1998), no. 222, 647–665. MR**1451324**, 10.1090/S0025-5718-98-00925-9**12.**R. Q. Jia, Approximation with scaled shift-invariant spaces by means of quasi-projection operators, manuscript.**13.**Rong Qing Jia and Charles A. Micchelli,*Using the refinement equations for the construction of pre-wavelets. II. Powers of two*, Curves and surfaces (Chamonix-Mont-Blanc, 1990) Academic Press, Boston, MA, 1991, pp. 209–246. MR**1123739****14.**Rong Qing Jia and Charles A. Micchelli,*On linear independence for integer translates of a finite number of functions*, Proc. Edinburgh Math. Soc. (2)**36**(1993), no. 1, 69–85. MR**1200188**, 10.1017/S0013091500005903**15.**Junjiang Lei, Rong-Qing Jia, and E. W. Cheney,*Approximation from shift-invariant spaces by integral operators*, SIAM J. Math. Anal.**28**(1997), no. 2, 481–498. MR**1434046**, 10.1137/S0036141095279869**16.**Amos Ron,*A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution*, Constr. Approx.**5**(1989), no. 3, 297–308. MR**996932**, 10.1007/BF01889611**17.**Charles K. Chui and Larry L. Schumaker (eds.),*Approximation theory IX. Vol. 2*, Innovations in Applied Mathematics, Vanderbilt University Press, Nashville, TN, 1998. Computational aspects. MR**1743025****18.**G. Strang and G. Fix, A Fourier analysis of the finite-element variational method, in Constructive Aspects of Functional Analysis, G. Geymonat (ed.), C.I.M.E. (1973), pp. 793-840.**19.**Q. Y. Sun, Convergence of cascade algorithms and smoothness of refinable distributions, manuscript.**20.**Lars F. Villemoes,*Wavelet analysis of refinement equations*, SIAM J. Math. Anal.**25**(1994), no. 5, 1433–1460. MR**1289147**, 10.1137/S0036141092228179**21.**S. R. Zhang, Refinable Functions and Subdivision Schemes, Ph.D. Thesis, University of Alberta, 1998.**22.**Ding-Xuan Zhou,*Norms concerning subdivision sequences and their applications in wavelets*, Appl. Comput. Harmon. Anal.**11**(2001), no. 3, 329–346. MR**1866346**, 10.1006/acha.2001.0359

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
39B12,
41A25,
42C40,
65D99

Retrieve articles in all journals with MSC (2000): 39B12, 41A25, 42C40, 65D99

Additional Information

**Rong-Qing Jia**

Affiliation:
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Email:
jia@xihu.math.ualberta.ca

DOI:
https://doi.org/10.1090/S0002-9939-03-06953-3

Keywords:
Refinement equations,
refinable functions,
cascade algorithms,
subdivision schemes,
rates of convergence

Received by editor(s):
August 29, 2001

Published electronically:
January 15, 2003

Additional Notes:
The author was supported in part by NSERC Canada under Grant OGP 121336

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society