Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Convergence rates of cascade algorithms

Author: Rong-Qing Jia
Journal: Proc. Amer. Math. Soc. 131 (2003), 1739-1749
MSC (2000): Primary 39B12, 41A25, 42C40, 65D99
Published electronically: January 15, 2003
MathSciNet review: 1955260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider solutions of a refinement equation of the form

\begin{displaymath}\phi = \sum_{\gamma\in\mathbb{Z}^s} a(\gamma) \phi ({M\cdot}-\gamma), \end{displaymath}

where $a$ is a finitely supported sequence called the refinement mask. Associated with the mask $a$ is a linear operator $Q_a$ defined on $L_p(\mathbb{R}^s)$by $Q_a \psi := \sum_{\gamma\in\mathbb{Z}^s} a(\gamma) \psi({M\cdot}-\gamma)$. This paper is concerned with the convergence of the cascade algorithm associated with $a$, i.e., the convergence of the sequence $(Q_a^n\psi)_{n=1,2,\ldots}$ in the $L_p$-norm.

Our main result gives estimates for the convergence rate of the cascade algorithm. Let $\phi$ be the normalized solution of the above refinement equation with the dilation matrix $M$ being isotropic. Suppose $\phi$ lies in the Lipschitz space $\operatorname{Lip} (\mu,L_p(\mathbb{R}^s))$, where $\mu >0$ and $1 \le p \le \infty$. Under appropriate conditions on $\psi$, the following estimate will be established:

\begin{displaymath}\bigl\Vert Q_a^n\psi - \phi \bigr\Vert _p \le C (m^{-1/s})^{\mu n}\quad \forall\, n \in \mathbb{N}, \end{displaymath}

where $m:=\vert\det M\vert$ and $C$ is a constant. In particular, we confirm a conjecture of A. Ron on convergence of cascade algorithms.

References [Enhancements On Off] (What's this?)

  • 1. J. Barros-Neto, An Introduction to the Theory of Distributions, Marcel Dekker, New York, 1973. MR 57:1113
  • 2. C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer-Verlag, New York, 1993.MR 94k:65004
  • 3. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision, Memoirs of Amer. Math. Soc., Volume 93, 1991. MR 92h:65017
  • 4. D. R. Chen, R. Q. Jia, and S. D. Riemenschneider, Convergence of vector subdivision schemes in Sobolev spaces, Applied and Computational Harmonic Analysis 12 (2002), 128-149. MR 2002k:65220
  • 5. W. Dahmen, N. Dyn, and D. Levin, On the convergence rates of the subdivision algorithms for box spline surfaces, Constr. Approx. 1 (1985), 305-332. MR 88h:41016
  • 6. S. Durand, Convergence of cascade algorithms introduced by I. Daubechies, Numer. Algorithms 4 (1993), 307-322. MR 94i:65019
  • 7. B. Han and R. Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal. 29 (1998), 1177-1199. MR 99f:41018
  • 8. R. Q. Jia, A dual basis for the integer translates of an exponential box spline, Rocky Mountain J. Math. 23 (1993), 223-242. MR 94a:41022
  • 9. R. Q. Jia, Subdivision schemes in $L_p$ spaces, Advances in Comp. Math. 3 (1995), 309-341. MR 96d:65028
  • 10. R. Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math. 103 (1998), 259-288. MR 99d:41016
  • 11. R. Q. Jia, Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), 647-665. MR 98g:41020
  • 12. R. Q. Jia, Approximation with scaled shift-invariant spaces by means of quasi-projection operators, manuscript.
  • 13. R. Q. Jia and C. A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: Powers of two, Curves and Surfaces (P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, eds.), Academic Press, New York, 1991, pp. 209-246. MR 93e:65024
  • 14. R. Q. Jia and C. A. Micchelli, On linear independence of integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992), 69-85. MR 94e:41044
  • 15. J. J. Lei, R. Q. Jia, and E. W. Cheney, Approximation from shift-invariant spaces by integral operators, SIAM J. Math. Anal. 28 (1997), 481-498. MR 98h:41026
  • 16. A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5 (1989), 297-308. MR 90g:41019
  • 17. A. Ron, Wavelets and their associated operators, in Approximation Theory IX, Vol. 2: Computational Aspects, C. K. Chui and L. L. Schumaker (eds.), pp. 283-317, Vanderbilt University, 1998. MR 2000k:41003
  • 18. G. Strang and G. Fix, A Fourier analysis of the finite-element variational method, in Constructive Aspects of Functional Analysis, G. Geymonat (ed.), C.I.M.E. (1973), pp. 793-840.
  • 19. Q. Y. Sun, Convergence of cascade algorithms and smoothness of refinable distributions, manuscript.
  • 20. L. F. Villemoes, Wavelet analysis of refinement equations, SIAM J. Math. Anal. 25 (1994), 1433-1460. MR 96f:39009
  • 21. S. R. Zhang, Refinable Functions and Subdivision Schemes, Ph.D. Thesis, University of Alberta, 1998.
  • 22. D. X. Zhou, Norms concerning subdivision sequences and their applications in wavelets, Applied and Computational Harmonic Analysis 11 (2001), 329-346. MR 2002i:42055

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 39B12, 41A25, 42C40, 65D99

Retrieve articles in all journals with MSC (2000): 39B12, 41A25, 42C40, 65D99

Additional Information

Rong-Qing Jia
Affiliation: Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Keywords: Refinement equations, refinable functions, cascade algorithms, subdivision schemes, rates of convergence
Received by editor(s): August 29, 2001
Published electronically: January 15, 2003
Additional Notes: The author was supported in part by NSERC Canada under Grant OGP 121336
Communicated by: David R. Larson
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society