Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On a question of B. H. Neumann


Authors: Robert Guralnick and Igor Pak
Journal: Proc. Amer. Math. Soc. 131 (2003), 2021-2025
MSC (2000): Primary 20D60
Published electronically: December 30, 2002
MathSciNet review: 1963745
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The automorphism group of a free group $\mathrm{Aut}(F_k)$ acts on the set of generating $k$-tuples $(g_1,\dots,g_k)$ of a group $G$. Higman showed that when $k=2$, the union of conjugacy classes of the commutators $[g_1,g_2]$ and $[g_2,g_1]$ is an orbit invariant. We give a negative answer to a question of B.H. Neumann, as to whether there is a generalization of Higman's result for $k \ge 3$.


References [Enhancements On Off] (What's this?)

  • [C] Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR 1013112
  • [CP] G. Cooperman, I. Pak, The product replacement graph on generating triples of permutations, preprint, 2000.
  • [D1] M. J. Dunwoody, On 𝑇-systems of groups, J. Austral. Math. Soc. 3 (1963), 172–179. MR 0153745
  • [D2] M. J. Dunwoody, Nielsen transformations, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 45–46. MR 0260852
  • [E1] M. Evans, Ph. D. Thesis, University of Wales, 1985.
  • [E2] Martin J. Evans, 𝑇-systems of certain finite simple groups, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 1, 9–22. MR 1188815, 10.1017/S0305004100075745
  • [G] Robert Gilman, Finite quotients of the automorphism group of a free group, Canad. J. Math. 29 (1977), no. 3, 541–551. MR 0435226
  • [H] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.
  • [LS] Martin W. Liebeck and Aner Shalev, Diameters of finite simple groups: sharp bounds and applications, Ann. of Math. (2) 154 (2001), no. 2, 383–406. MR 1865975, 10.2307/3062101
  • [N] B. H. Neumann, On a question of Gaschütz, Arch. Math. (Basel) 7 (1956), 87–90. MR 0078991
  • [NN] Bernhard H. Neumann and Hanna Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1951), 106–125 (German). MR 0040297
  • [P] Igor Pak, What do we know about the product replacement algorithm?, Groups and computation, III (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 301–347. MR 1829489
  • [PR] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20D60

Retrieve articles in all journals with MSC (2000): 20D60


Additional Information

Robert Guralnick
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113
Email: guralnic@math.usc.edu

Igor Pak
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307

DOI: https://doi.org/10.1090/S0002-9939-02-06752-7
Received by editor(s): June 1, 2001
Received by editor(s) in revised form: February 20, 2002
Published electronically: December 30, 2002
Communicated by: Stephen D. Smith
Article copyright: © Copyright 2002 American Mathematical Society