The rational LS-category of -trivial fibrations

Authors:
Maxence Cuvilliez and Barry Jessup

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2223-2233

MSC (2000):
Primary 53C29, 55M30, 55P62, 55R05

DOI:
https://doi.org/10.1090/S0002-9939-02-06772-2

Published electronically:
October 15, 2002

MathSciNet review:
1963771

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide new upper and lower bounds for the rational LS-category of a rational fibration of simply connected spaces that depend on a measure of the triviality of which is strictly finer than the vanishing of the higher holonomy actions. In particular, we prove that if is *-trivial* for some and enjoys Poincaré duality, then

**[C1]**Maxence Cuvilliez,*Properties of semi-trivial fibrations*, preprint of the Centre de Recerca matematica (Barcelona)**468**(2001).**[C2]**-,*L-S category of the total space in a fibration and**-monomorphisms*, Topology and its Applications**109**(2001), 127-146. MR**2001m:55008****[CFJP]**Maxence Cuvilliez, Yves Félix, Barry Jessup & Paul-Eugène Parent,*Rational Lusternik-Schnirelmann category of fibrations*, to appear in J.P.A.A.**[FH]**Y. Félix and S. Halperin,*Rational L.-S. category and its applications*, Trans. Amer. Math. Soc.**237**(1982), 1-37. MR**84h:55011****[FHL]**Y. Félix, S. Halperin and Jean-Michel Lemaire,*The rational LS category of products and Poincare duality complexes*, Topology**37, No. 4**(1998), 749-756. MR**99a:55003****[FHT1]**Yves Félix, Stephen Halperin and Jean-Claude Thomas,*Rational Homotopy Theory*, Springer-Verlag, GTM. MR**2002d:55014****[FHT2]**-,*Gorenstein Spaces*, Advances in Mathematics**71**(1) (1988), 92-112. MR**89k:55019****[GJ]**Sonia Ghorbal and Barry Jessup,*Estimating the rational LS-category of elliptic spaces*, Proc. Amer. Math. Soc.**129**(2001), 1833-1842. MR**2001k:55032****[FaHu]**E. Fadell, S. Y.Husseini,*Relative category, product and coproducts*, Rend. Sem. Mat. Fis. Milano**64**(1994), 99-115. MR**97f:55003****[I]**N. Iwase,*Ganea's conjecture on Lusternik-Schnirelmann category*, Bull. London Math. Soc.**30**(1998), 623-634. MR**99j:55003****[J]**Barry Jessup,*Holonomy-Nilpotent Fibrations and Rational Lusternik-Schnirelmann Category*, Topology**34**(4) (1995), 759-770. MR**96k:55014****[JS]**I.M. James and W. Singhoff,*On the category of fibre bundles, Lie groups and Froebenius maps*, Contemp. Math.**227**(1996), 177-189. MR**2000a:55007****[M]**Pierre-Marie Moyaux,*Lower bounds for relative Lusternik-Schnirelmann Category*, Manuscripta Math.**101**(2000), 533-542. MR**2001f:55006****[S]**D. Sullivan,*Infinitesimal computations in topology*, Inst. Hautes Études Sci. Publ. Math.**47**(1978), 269-331. MR**58:31119****[ST]**Hans Scheerer and Daniel Tanré,*Fibrations à la Ganea (French)*, Bull. Belg. Math. Soc.**4**(3) (1997), 333-353. MR**98g:55003****[T]**G.H. Toomer,*Lusternik-Schnirelmann category and the Moore spectral sequence*, Math. Z.**138**(1974), 123-143. MR**50:8509**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C29,
55M30,
55P62,
55R05

Retrieve articles in all journals with MSC (2000): 53C29, 55M30, 55P62, 55R05

Additional Information

**Maxence Cuvilliez**

Affiliation:
Centre de Recerca Matemàtica, Barcelona, Spain

Email:
mcuvilli@crm.es

**Barry Jessup**

Affiliation:
Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Email:
bjessup@uottawa.ca

DOI:
https://doi.org/10.1090/S0002-9939-02-06772-2

Keywords:
Lusternik-Schnirelmann category,
holonomy,
minimal model

Received by editor(s):
October 10, 2000

Received by editor(s) in revised form:
February 21, 2002

Published electronically:
October 15, 2002

Additional Notes:
This research was partially supported by L’Université Catholique de Louvain-la-Neuve and by the National Science and Engineering Research Council of Canada. The second author thanks colleagues at UCL for their unstinting hospitality during a recent visit

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 2002
American Mathematical Society