Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Constraints for the normality of monomial subrings and birationality


Authors: Aron Simis and Rafael H. Villarreal
Journal: Proc. Amer. Math. Soc. 131 (2003), 2043-2048
MSC (2000): Primary 13H10; Secondary 14E05, 14E07, 13B22
Published electronically: November 13, 2002
MathSciNet review: 1963748
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $k$ be a field and let ${\mathbf F}\subset k[x_1,\ldots,x_{n}]$ be a finite set of monomials whose exponents lie on a positive hyperplane. We give necessary conditions for the normality of both the Rees algebra $R[\mathbf{F}t]$ and the subring $k[\mathbf{F}]$. If the monomials in $\mathbb{F}$ have the same degree, one of the consequences is a criterion for the $k$-rational map $F\colon{\mathbb P}^{n-1}_k \dasharrow {\mathbb P}^{m-1}_k$ defined by $\mathbf{F}$ to be birational onto its image.


References [Enhancements On Off] (What's this?)

  • 1. W. Bruns and R. Koch, Normaliz, a program to compute normalizations of affine semigroups. Available from ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/kommalg/software.
  • 2. C. Escobar, J. Martínez-Bernal and R. Villarreal, A comparison of Ehrhart rings with some other monomial subrings, Reporte Técnico No. 303, CINVESTAV-IPN, 2001.
  • 3. D. Grayson and M. Stillman, Macaulay$2$, 1996. Available via ftp from math.uiuc.edu.
  • 4. W. Gröbner, Algebraische Geometrie, 2. Teil, Bibliographisches Institut Manheim, 1970. MR 48:8499
  • 5. F. Russo and A. Simis, On birational maps and Jacobian matrices, Compositio Math. 126 (2001), 335-358. MR 2002d:14018
  • 6. A. Simis, B. Ulrich and W. V. Vasconcelos, Codimension, multiplicity and integral extensions, Math. Proc. Camb. Phil. Soc. 130 (2001), 237-257. MR 2002c:13017
  • 7. A. Simis, W. V. Vasconcelos and R. Villarreal, The integral closure of subrings associated to graphs, J. Algebra 199 (1998), 281-289. MR 99c:13004
  • 8. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American Mathematical Society, Rhode Island, 1996. MR 97b:13034
  • 9. R. Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics 238, Marcel Dekker, Inc., New York, 2001. MR 2002c:13001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13H10, 14E05, 14E07, 13B22

Retrieve articles in all journals with MSC (2000): 13H10, 14E05, 14E07, 13B22


Additional Information

Aron Simis
Affiliation: Departamento de Matemática, Universidade Federal de Pernambuco, 50740-540 Recife, Pe, Brazil
Email: aron@dmat.ufpe.br

Rafael H. Villarreal
Affiliation: Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000 México City, D.F., Mexico
Email: vila@esfm.ipn.mx

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06790-4
PII: S 0002-9939(02)06790-4
Keywords: Birational map, minors, normal ideal, Rees algebras
Received by editor(s): September 10, 2001
Received by editor(s) in revised form: March 7, 2002
Published electronically: November 13, 2002
Additional Notes: The first author was partially supported by a CNPq grant and PRONEX-ALGA (Brazilian Group in Commutative Algebra and Algebraic Geometry)
The second author was supported in part by CONACyT grant 27931E. This author thanks PRONEX-ALGA for their hospitality
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 2002 American Mathematical Society