Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Perturbation of Wigner matrices and a conjecture

Authors: Mark Fannes and Dénes Petz
Journal: Proc. Amer. Math. Soc. 131 (2003), 1981-1988
MSC (2000): Primary 15A15, 15A62, 46L54
Published electronically: February 20, 2003
MathSciNet review: 1963740
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H_{0}$ be an arbitrary self-adjoint $n\times n$ matrix and $H(n)$ be an $n\times n$ (random) Wigner matrix. We show that $t\mapsto \hbox {Tr}\, \exp (H(n)-\text{i}\, tH_{0})$ is positive definite in the average. This partially answers a long-standing conjecture. On the basis of asymptotic freeness our result implies that $t\mapsto \tau (\exp (a- \text{i}\, tb))$ is positive definite whenever the noncommutative random variables $a$ and $b$ are in free relation, with $a$ semicircular.

References [Enhancements On Off] (What's this?)

  • 1. D. Bessis, P. Moussa, and M. Villani, Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics, J. Math. Phys. 16 (1975), 2318-2325. MR 54:4471
  • 2. N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Springer, Berlin-Heidelberg-New York, 1992. MR 94e:58130
  • 3. B.D. Bojanov, H.A. Hakopian and A.A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer, Dordrecht, 1993. MR 94k:41001
  • 4. E. Brézin, Dyson's universality in generalized ensembles of random matrices, in The Mathematical Beauty of Physics, J.M. Drouffe and J.B. Zuber (eds.), World Scientific, 1997, pp. 1-11. MR 98k:82073
  • 5. M. Fannes, D. Petz, On the function ${\hbox {Tr\,}} e^{H+\text {i}\,tK}$, Int. J. Math. and Math. Sci. 29 (2002), 389-393.
  • 6. M. Gaudin, Sur la transformée de Laplace de $\hbox {tr}\, \hbox {e}^{-A}$ considérée comme fonction de la diagonale de $A$, Ann. Inst. Henri Poincaré A 28 (1978), 431-442. MR 81g:44004
  • 7. F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, Vol. 77, Amer. Math. Soc., Providence, 2000. MR 2001j:46099
  • 8. M.L. Mehta, Random Matrices, Second edition, Academic Press, Boston, 1991. MR 92f:82002
  • 9. M.L. Mehta and K. Kumar, On an integral representation of the function $\hbox {Tr}\, \exp (A-\lambda B)$, J. Phys. A 9 (1976), 197-206. MR 55:2954
  • 10. P. Moussa, On the representation of $\hbox {Tr}\, \exp (A-\lambda B)$, Reviews in Math. Phys. 12 (2000), 621-655. MR 2001h:47016
  • 11. D. Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991), 201-220. MR 92d:46163
  • 12. D. Voiculescu, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Notices (1998), 41-63. MR 2000d:46080

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 15A15, 15A62, 46L54

Retrieve articles in all journals with MSC (2000): 15A15, 15A62, 46L54

Additional Information

Mark Fannes
Affiliation: Instituut voor Theoretische Fysica, K.U. Leuven, B-3001 Leuven, Belgium

Dénes Petz
Affiliation: Department for Mathematical Analysis, Budapest University of Technology and Economics, H–1521 Budapest XI., Hungary

Keywords: Bessis-Moussa-Vilani conjecture, Gaussian random matrix, Wigner theorem, positive definite function, free random variables, semicircular element
Received by editor(s): July 6, 2001
Published electronically: February 20, 2003
Additional Notes: The second author was partially supported by OTKA T 032662
Communicated by: David R. Larson
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society