SMOOTH NORMS ON CERTAIN \(C(K) \) SPACES

PETR HÁJEK

(Communicated by Jonathan M. Borwein)

Abstract. \(C(K) \) spaces admit an equivalent \(C^\infty \)-smooth renorming whenever \(K^{(\omega_1)} = \emptyset \).

In this note we consider the problem of finding on a given \(C(K) \) space an equivalent norm of the highest possible smoothness. It is a classical result (e.g. \[DGZ\]) that the existence of an equivalent \(C^1 \)-smooth norm on a Banach space implies that the space is Asplund. On the other hand, deep examples of Haydon (\[H\], see also \[DGZ\]) show that not every \(C(K) \) Asplund space admits an equivalent Gâteaux smooth renorming.

So far, an equivalent \(C^\infty \) renorming was constructed on \(C(K) \) spaces where \(K^{(\omega_0)} = \emptyset \) (\[GPWZ\]), and a \(C^1 \) norm is guaranteed when \(K^{(\omega_1)} = \emptyset \) (\[D\]). Haydon’s \(C^\infty \) renorming techniques work well for certain tree-like compact sets \(K \), which may have nonempty derived sets of arbitrary large ordinal number, but their disadvantage is that they put very strong structural restrictions on \(K \) (apart from the obvious and necessary scatteredness). This is not accidental, because the above-mentioned example of \(C(K) \) without a Gâteaux norm has \(K^{(\omega_1)} \) a singleton.

In our note we show the existence of \(C^\infty \) renormings whenever \(K^{(\omega_1)} = \emptyset \). This is the best possible result without additional structural assumptions on \(K \).

However, it is really only a small step towards a desired general theorem linking the existence of \(C^\infty \) renorming of \(C(K) \) to some other properties of the space, such as the existence of a dual LUR renorming of \(C(K) \). For background material and notation we refer to \[DGZ\].

Definition 1. Let \(S \subset \ell_\infty(\Gamma) \), \(\Phi : S \to \mathbb{R} \). We say that \(\Phi \) locally depends on finitely many coordinates (LDF) if for every \(f \in S \) there exist \(\varepsilon > 0 \), \(\gamma_1, \ldots, \gamma_n \in \Gamma \) and \(F : \mathbb{R}^n \to \mathbb{R} \) such that:

\[
\Phi(g) = F(g(\gamma_1), \ldots, g(\gamma_n)) \quad \text{whenever } g \in B(f, \varepsilon) \cap S.
\]

Given \(1 > \delta > 0 \), find \(\phi_\delta : \mathbb{R} \to \mathbb{R} \) such that \(\phi_\delta \) is \(C^\infty \)-smooth, even and convex, and \(\phi_\delta([0, 1-\delta]) = 0 \), \(\phi_\delta(1) = 1 \).

Definition 2. Let \(f \in \ell_\infty(\Gamma) \). Put \(f^\infty = \inf \{ t, \text{card}\{ \gamma, |f(\gamma)| > t \} \text{ is finite} \} \).
Lemma 3. Let $1 > \delta > 0$, and let $\Phi : \ell_\infty(\Gamma) \to \mathbb{R} \cup \{+\infty\}$ be a convex function defined by

$$\Phi(f) = \sum_{\gamma \in \Gamma} \phi_\delta(f(\gamma)).$$

Then Φ restricted to $\{f \in \ell_\infty(\Gamma), f^\infty < 1 - \delta\}$ is finite, LDF and C^∞-smooth.

Proof. Given $f, f^\infty < 1 - \delta$, the set $\Theta = \{\gamma \in \Gamma, |f(\gamma)| > f^\infty + \frac{1 - \delta}{2}\}$ is finite. Thus for $g \in B(f, \frac{1 - \delta - f^\infty}{2})$ we have $\Phi(g) = \sum_{\gamma \in \Theta} \phi_\delta(g(\gamma))$, which is a finite sum of C^∞ smooth convex functions. \square

Theorem 4. Let K be a scattered compact, $K^{(\omega_1)} = \emptyset$. Then $C(K)$ admits an equivalent LDF and C^∞-smooth norm.

Proof. There is $\Lambda < \omega_1$ such that $K^{(\Lambda)} \neq \emptyset$ is finite and $K^{(\Lambda+1)} = \emptyset$. The space $C_0(K) = \{f \in C(K), f(K^{(\Lambda)}) = 0\}$ is isomorphic to $C(K)$.

Put $L_\alpha = K^{(\alpha)} \setminus K^{(\alpha+1)}$, $\alpha \leq \Lambda$, and fix $\{\delta_\alpha\}_{\alpha \leq \Lambda}$ such that $\delta_\alpha > 0$ and

$$\prod_{\alpha=0}^\Lambda (1 + \delta_\alpha).$$

Put $\psi_\alpha = \phi_{\delta_{\alpha+1}}$, $D_\alpha = \prod_{\beta=0}^\alpha (1 + \delta_\beta)$. Let us define a convex function $\Psi : C_0(K) \to \mathbb{R} \cup \{+\infty\}$ by $\Psi(f) = \sum_{0 \leq \alpha \leq \Lambda} \sum_{\gamma \in \Lambda} \phi_\delta(D_\alpha \cdot f(\gamma))$.

Our aim will be to show that $\Psi^{-1}(\{0, \frac{1}{2}\})$ is the unit ball of an equivalent LDF (canonically, $C_0(K) \subset \ell_\infty(K)$) and C^∞ smooth norm on $C_0(K)$

For every $f \in C_\infty(K)$, $0 \leq \alpha \leq \Lambda$ put

$$a_\alpha^f = (f|_{L_\alpha})^\infty, \quad b_\alpha^f = \|f|_{L_\alpha}\|_\infty.$$

Note that $\alpha \to D_\alpha$ is an increasing and thus upper semicontinuous (usc) function on $[0, \Lambda]$ (which is a compact space when considered with its natural interval topology). We have:

$$b_{\alpha+1}^f = a_\alpha^f \quad \text{and} \quad \alpha \to b_\alpha^f \in C[0, \Lambda],$$

(*)

$$b_\alpha^f = \lim_{\tau/\alpha, \tau < \alpha} a_\alpha^f.$$

Therefore, for a fixed $f \neq 0$, $\alpha \to D_\alpha \cdot b_\alpha^f$ is usc on $[0, \Lambda]$, so it attains its maximum M_f at some $\beta \in [0, \Lambda]$. Clearly, $M_f \geq D_{\alpha+1}b_{\alpha+1}^f = (1 + \delta_{\alpha+1})D_\alpha a_\alpha^f$, and so $D_\alpha a_\alpha^f \leq \frac{M_f}{1 + \delta_{\alpha+1}} \leq M_f (1 - \frac{\delta_{\alpha+1}}{2})$, for all $\alpha \in [0, \Lambda]$.

First note that $D_\beta b_\beta^f > (D_\alpha a_\alpha^f)^\infty$. Indeed, otherwise there exist increasing sequences $\alpha_n \not\to \gamma$, $\alpha_n \in [0, \Lambda)$, $D_\alpha a_\alpha^f \not\to D_\beta b_\beta^f$. However, by (*), $a_\alpha^f \to b_\gamma^f$, $D_\gamma > (1 + \delta_\gamma)D_{\alpha_n}$ for $n \in \mathbb{N}$, and consequently $D_\gamma b_\gamma^f \geq (1 + \delta_\gamma)D_\beta b_\beta^f$, a contradiction. So there exists $\varepsilon_f > 0$, such that $\text{card}\{\alpha, D_\alpha a_\alpha^f > D_\beta b_\beta^f - \varepsilon_f\}$ is finite. Next we claim that $\text{card}\{\alpha, D_\alpha a_\alpha^f > D_\beta b_\beta^f - \varepsilon_f\}$ is also finite.

Again, otherwise there exists $\alpha_n \not\to \gamma$, $D_{\alpha_n} b_{\alpha_n}^f > D_\beta b_\beta^f - \varepsilon_f$. Using (*), and passing to a suitable subsequence of $\{\alpha_n\}$ we find $\beta_n \not\to \gamma$, $\alpha_n \leq \beta_n < \alpha_{n+1}$ such that

$$D_{\beta_n} b_{\beta_n}^f \geq D_{\alpha_{n+1}} b_{\alpha_{n+1}}^f - \frac{\varepsilon_f}{2}.$$

This is a contradiction with the definition of ε_f, since

$$\{\beta_n\} \subset \{\alpha, D_\alpha a_\alpha^f > D_\beta a_\beta^f - 2\varepsilon_f\}.$$
Put $O = \{ f \in C_0(K), M_f < 1 \} \subset 2B_{C_0(K)}$. We claim that $\Psi|_O$ is finite, C^∞-smooth and LDF. Moreover, $\Psi^{-1}([0, \frac{1}{2}]) \subset \text{int } O$, which by the implicit function theorem \([D3]\) finishes the proof.

Choose any $f \in O$. Consider the finite set $A = \{ \alpha \in [0, A], \text{ either } D_\alpha b_{\alpha}^f > M_f - \varepsilon_f \text{ or } \delta_{\alpha+1} \geq \frac{\varepsilon_f}{4} \}$, and put $\delta_f = \min \{ \frac{\delta_{\alpha+1}}{16}, \alpha \in A \}$. Let us check that $\Psi|_{B(f, \delta_f)}$ depends on finitely many coordinates (therefore it is necessarily C^∞-smooth). If $\gamma \in L_\alpha$, $\alpha \notin A$, then $4\delta_{\alpha+1} < \varepsilon_f$ and $D_\alpha b_{\alpha}^f \leq M_f - \varepsilon_f \leq 1 - \varepsilon_f \leq 1 - 4\delta_{\alpha+1}$. For $g \in B(f, \delta_f)$, $|g(\gamma)| \leq |f(\gamma)| + \delta_f$, so

$$|D_\alpha g(\gamma)| \leq D_\alpha b_{\alpha}^f + 2\delta_f \leq 1 - \varepsilon_f + 2\delta_f \leq 1 - 2\delta_{\alpha+1}.$$ Consequently,

$$\psi_\alpha(D_\alpha g(\gamma)) = 0 \quad \text{and} \quad \Psi(g) = \sum_{\alpha \in A} \sum_{\gamma \in L_\alpha} \psi_\alpha(D_\alpha g(\gamma)).$$ If $\alpha \in A$, $\gamma \in L_\alpha$, and $|f(\gamma)| < a_\alpha^f (1 + \frac{\delta_{\alpha+1}}{8})$, then

$$|D_\alpha f(\gamma)| \leq D_\alpha a_{\alpha}^f \left(1 + \frac{\delta_{\alpha+1}}{8} \right) \leq M_f \left(1 - \frac{\delta_{\alpha+1}}{2} \right) \left(1 + \frac{\delta_{\alpha+1}}{8} \right) \leq 1 - \frac{\delta_{\alpha+1}}{4}.$$ If $g \in B(f, \delta_f)$, we then have

$$|D_\alpha g(\gamma)| \leq 1 - \frac{\delta_{\alpha+1}}{4} + 2\delta_f \leq 1 - \frac{\delta_{\alpha+1}}{8}.$$ Consequently, in this case also $\psi_\alpha(D_\alpha g(\gamma)) = 0$. The remaining set $S = \{ \gamma, \gamma \in L_\alpha \text{ for } \alpha \in A \}$ and $f(\gamma) \geq a_{\alpha}^f (1 + \frac{\delta_{\alpha+1}}{8})$ is clearly finite, and we have

$$\Psi(g) = \sum_{\alpha \in A} \sum_{\gamma \in S \setminus L_\alpha} (D_\alpha g(\gamma))$$ whenever $g \in B(f, \delta_f)$. This proves (Lemma 3) that $\Psi|_O$ is C^∞-smooth and LDF. It is obvious that $M_f \leq \frac{1}{2}$ implies $\Psi(f) = 0$ and $M_f = 1$ implies $\Psi(f) \geq 1$. Thus $B = \Psi^{-1}([0, \frac{1}{2}])$ is an equivalent unit ball of $C_0(K)$. By the implicit function theorem, its Minkowski functional is C^∞-smooth and LDF. \hfill \square

References

Mathematical Institute, Czech Academy of Science, Žižná 25, Praha, 11567, Czech Republic

E-mail address: hajek@math.cas.cz