Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Approximation methods for nonlinear operator equations


Authors: C. E. Chidume and H. Zegeye
Journal: Proc. Amer. Math. Soc. 131 (2003), 2467-2478
MSC (2000): Primary 47H04, 47H06, 47H30, 47J05, 47J25
Published electronically: November 13, 2002
MathSciNet review: 1974645
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a real normed linear space and $A: E \rightarrow E$ be a uniformly quasi-accretive map. For arbitrary $x_1\in E$ define the sequence $x_n \in E$ by $ x_{n+1}:=x_n-\alpha_nAx_n,~n\geq 1, $ where $\{\alpha_n\}$ is a positve real sequence satisfying the following conditions: (i) $\sum\alpha_n=\infty$; (ii) $\lim \alpha_n=0$. For $x^*\in N(A):=\{x\in E:Ax=0\}$, assume that $\sigma :=\inf_{ n\in N_0 } \frac{\psi(\vert\vert x_{n+1}-x^*\vert\vert)}{\vert\vert x_{n+1}-x^*\vert\vert}>0$ and that $\vert\vert Ax_{n+1}-Ax_n\vert\vert\rightarrow 0$, where $ N_0:=\{n\in N$ (the set of all positive integers): $x_{n+1}\neq x^*\}$and $\psi:[0,\infty)\rightarrow [0,\infty)$ is a strictly increasing function with $\psi(0)=0$. It is proved that a Mann-type iteration process converges strongly to $x^*$. Furthermore if, in addition, $A$ is a uniformly continuous map, it is proved, without the condition on $\sigma$, that the Mann-type iteration process converges strongly to $x^*$. As a consequence, corresponding convergence theorems for fixed points of hemi-contractive maps are proved.


References [Enhancements On Off] (What's this?)

  • 1. Alber, Ya., Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamerican Math. J., Vol. 4, No. 2 (1994), 39-54. MR 95f:47089
  • 2. F. E. Browder, Nonlinear mappings of nonexpansive and accetive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882. MR 38:581
  • 3. S.-S. Chang, On Chidume's open questions and approximation solutions of multi-valued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl. 216 (1997), 94$-$111.
  • 4. S.-S. Chang and K. K. Tan, Iteration process of fixed point for operators of monotone type in Banach spaces, Bull. Austral. Math. Soc. 57 (1998), 433-445. MR 99e:47083
  • 5. C.E. Chidume, Iterative construction of fixed points for multi-valued operators of the monotone type, Applicable Analysis 23 (1986), 209-218. MR 88e:47111
  • 6. C.E. Chidume, Iterative approximation of fixed points of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288. MR 87m:47122
  • 7. C.E. Chidume, An iterative process for nonlinear Lipschitzian strongly accretive mapping in $L^p$ spaces, J. Math. Anal. Appl. 151 (1990), 453-461. MR 91k:47080
  • 8. C.E. Chidume, Approximation of fixed points of strongly pseudo-contractive mappings, Proc. Amer. Math. Soc. 120 (1994), 545-551. MR 94d:47056
  • 9. C.E. Chidume, Iterative solution of nonlinear equations of strongly accretive type, Math. Nachr. 189 (1998), 49-60. MR 99g:47141
  • 10. C.E. Chidume, Convergence theorems for strongly pseudocontractive and strongly accretive nonlinear maps, J. Math. Anal. Appl. 228 (1998), 254-264. MR 99h:47065
  • 11. C.E. Chidume and C. Moore, Steepest descent method for equilibrium points of nonlinear systems with accretive operators, J. Math. Anal. Appl. 245 (2000), 142-160. MR 2001a:47075
  • 12. C.E. Chidume and C. Moore. The solution by iteration of nonlinear equations in uniformly smooth Banach spaces, J. Math. Anal. Appl. 215 (1997), 132-146. MR 98m:47107
  • 13. C. E. Chidume and S. Mutangadura, An example on the Mann iteration methods for Lipschitzian pseudocontractions, Proc. Amer. Math. Soc. 129 (2001), 2359-2363. MR 2002f:47104
  • 14. C. E. Chidume, H. Zegeye and B. Ntatin, A generalized steepest descent approximation for the zeros of $m$-accretive operators, J. Math. Anal. Appl. 261 (1999), 48$-$73. MR 2000e:47080
  • 15. L. Deng, On Chidume's open questions, J. Math. Anal. Appl. 174 (1993), 441$-$449. MR 94b:47073
  • 16. L. Deng, Iteration processes for nonlinear Lipschitzian strongly accretive mappings in $L_p$ spaces, J. Math. Anal. Appl. 188 (1994), 128$-$140. MR 96f:47124
  • 17. L. Deng and X. P. Ding, Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces, Nonlinear Analysis 24 (1995), 981$-$987. MR 96a:47096
  • 18. J. C. Dunn, Iterative construction of fixed points for multivalued operators of the monotone type, J. Funct. Ann. 27 (1978), 38$-$50. MR 81f:47056
  • 19. S. Ishikawa, Fixed points by a new iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147$-$150. MR 49:1243
  • 20. T. Kato, Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan 19 (1967), 508$-$520. MR 30:1820
  • 21. L. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114$-$125. MR 97g:47069
  • 22. L. W. Liu and Y. Q. Li, On generalized set-valued variational inclusions, J. Math. Anal. Appl. 261 (2001), 231-240. MR 2002g:47142
  • 23. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. MR 14:998f
  • 24. C. Moore and B.V.C. Nnoli, Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Computers Math. Applic. 42 (2001), 131-140. MR 2002f:47145
  • 25. M.O. Osilike, Iterative solution of nonlinear equations of the $\psi$-strongly accretive type, J. Math. Anal. Appl. 200 (1996), 259-271. MR 97d:65032
  • 26. M.O. Osilike, Iterative construction of fixed points of multi-valued operators of the accretive type, Soochow J. Math. 22 (1996), 485-494. MR 97i:47122
  • 27. M.O. Osilike, Iterative construction of fixed points of multi-valued operators of the accretive type II, Soochow J. Math. 24 (1998), 141-146. MR 99e:47079
  • 28. B.E. Rhoades and L. Saliga, Some fixed point iteration procedures II, Nonlinear Analysis forum 6 (2001), 193-217. MR 2002f:47115
  • 29. S. Zhang, On the convergence problems of Ishikawa and Mann iteration process with errors for $\psi$-pseudo contractive type mappings. Appl. Math. Mechanics 21 (2000), 1-10. MR 2001c:47080
  • 30. X.L. Weng, Iterative construction of fixed points of a dissipative type operator, Tamkang J. Math. 23 (1992), 205-215. MR 94c:47077
  • 31. E. Zeidler, Nonlinear functional analysis and its applications, Part II: Monotone Operators, Springer$-$Verlag, 1985. MR 91b:47001; MR 91b:47002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H04, 47H06, 47H30, 47J05, 47J25

Retrieve articles in all journals with MSC (2000): 47H04, 47H06, 47H30, 47J05, 47J25


Additional Information

C. E. Chidume
Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Email: chidume@ictp.trieste.it

H. Zegeye
Affiliation: The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Email: habz@ictp.trieste.it

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06769-2
PII: S 0002-9939(02)06769-2
Keywords: Bounded operators, nonexpansive retraction, uniformly accretive maps, uniformly pseudocontractive maps, uniformly smooth Banach spaces
Received by editor(s): December 8, 2001
Received by editor(s) in revised form: March 18, 2002
Published electronically: November 13, 2002
Additional Notes: The second author undertook this work with the support of the “ICTP Programme for Training and Research in Italian Laboratories, Trieste, Italy".
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2002 American Mathematical Society