Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Conditional weak laws in Banach spaces


Author: Ana Meda
Journal: Proc. Amer. Math. Soc. 131 (2003), 2597-2609
MSC (2000): Primary 60F10, 60B10, 60F05, 60G50
Published electronically: November 27, 2002
MathSciNet review: 1974661
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(B,\Vert\cdot\Vert) $ be a separable Banach space. Let $Y, Y_1, Y_2, \ldots$ be centered i.i.d. random vectors taking values on $B$ with law $\mu$, $\mu (\cdot )=P(Y\in\cdot )$, and let $S_n =\sum_{i=1}^n Y_i.$ Under suitable conditions it is shown for every open and convex set $0 \notin D\subset B$ that $P\left( \Vert{\frac{{\displaystyle S_n}}{\displaystyle n}} - v_d \Vert> \varepsilon \Big\vert\frac{{\displaystyle S_n}}{\displaystyle n}\in D\right)$ converges to zero (exponentially), where $v_d$ is the dominating point of $D.$ As applications we give a different conditional weak law of large numbers, and prove a limiting aposteriori structure to a specific Gibbs twisted measure (in the direction determined solely by the same dominating point).


References [Enhancements On Off] (What's this?)

  • 1. De Acosta, A. (1985). On large deviations of sums of independent random vectors. In Probability in Banach Spaces V. Lecture Notes in Math. Springer. (1153) 1-14. MR 87f:60035
  • 2. Van Campenhout, J. M., and Cover, T. M. (1981). Maximum entropy and conditional probability. IEEE Trans. Inform. Theory. (IT-27) 483-489. MR 83h:94008
  • 3. Csiszár, I. (1984). Sanov property, generalized $I$-projection and a conditional limit theorem. Ann. Probab. (12) 768-793. MR 86h:60065
  • 4. Dembo, A., and Kuelbs, J. (1998). Refined Gibbs conditioning principle for certain infinite dimensional statistics. Studia Sci. Math. Hungar. (34) 107-126. MR 2000b:60068
  • 5. Dembo, A., and Zeitouni, O. (1998). Large Deviation Techniques and Applications. 2nd ed. Springer, New York. MR 99d:60030
  • 6. Dembo, A., and Zeitouni, O. (1996). Refinements of the Gibbs conditioning principle. Probab. Theory Related Fields. (104) 1-14. MR 97k:60078
  • 7. Dinwoodie, I. H. (1992). Mesures dominantes et Théorème de Sanov. Ann. Inst. H. Poincaré Probab. Statist. (28) 365-373. MR 93h:60038
  • 8. Donsker, M. D., and Varadhan, S. R. S. (1976). Asymptotic evaluation of certain Markov processes expectations for large time III. Comm. Pure Appl. Math. (29) 389-461. MR 55:1492
  • 9. Einmahl, U., and Kuelbs, J. (1996). Dominating points and large deviations for random vectors. Probab. Theory Related Fields. (105) 529-543. MR 97k:60008
  • 10. Iscoe, I., Ney, P., and Nummelin, E. (1985). Large deviations for uniformly recurrent Markov additive processes. Adv. Appl. Math. (6) 373-412. MR 88b:60077
  • 11. Kuelbs, J. (2000). Large deviation probabilities and dominating points for open, convex sets: non-logarithmic behavior. Ann. Probab. (28) 1259-1279. MR 2001k:60003
  • 12. Lehtonen, T., and Nummelin, E. (1988). On the convergence of empirical distributions under partial observations. Ann. Acad. Sci. Fenn. Math. Ser. A.I. (13) 219-223. MR 90e:60035
  • 13. Lehtonen, T., and Nummelin, E. (1990). Level I theory of large deviations in the ideal gas. Int'l J. Theor. Phys. (29) 621-635. MR 91f:82033
  • 14. Meda, A. (1998). Conditional Laws and Dominating Points. University of Wisconsin Ph.D. Thesis.
  • 15. Meda, A., and Ney, P. (1998). A conditioned law of large numbers for Markov additive chains. Studia Sci. Math. Hungar. (34) 305-316.
  • 16. Meda, A., and Ney, P. (1999). The Gibbs conditioning principle for Markov chains, in Perplexing Problems in Probability. M. Bramson and R. Durret, Ed., Ser. Progress in Probability. Birkhäuser, Boston. (44) 385-398. MR 2001i:60037
  • 17. Ney, P. (1983). Dominating points and the asymptotics of large deviations on $\mathbb{R} ^d$. Ann. Probab. (11) 158-167. MR 85b:60026
  • 18. Ney, P. (1984). Convexity and large deviations. Ann. Probab. (12) 903-906. MR 85j:60046
  • 19. Nummelin, E. (1987). A conditional weak law of large numbers. In Proc. of Seminar on Stability Problems for Stoch. Models Suhumi, USSR. Lecture Notes in Math. (1142) 259-262. MR 91f:60057

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60F10, 60B10, 60F05, 60G50

Retrieve articles in all journals with MSC (2000): 60F10, 60B10, 60F05, 60G50


Additional Information

Ana Meda
Affiliation: Departmento de Matemáticas, Cub. 132, Facultad de Ciencias, UNAM, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán 04510, México D. F., México
Email: amg@hp.fciencias.unam.mx

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06785-0
PII: S 0002-9939(02)06785-0
Keywords: Conditional laws, dominating point, large deviations, Banach spaces
Received by editor(s): July 16, 2000
Received by editor(s) in revised form: March 21, 2002
Published electronically: November 27, 2002
Additional Notes: The author was supported in part by Grant PAPIIT-DGAPA IN115799 of UNAM, and the final version was written while holding a Postdoctoral position at IMP, México
Communicated by: Claudia M. Neuhauser
Article copyright: © Copyright 2002 American Mathematical Society