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ISOLATING SEGMENTS FOR CARATHÉODORY SYSTEMS
AND EXISTENCE OF PERIODIC SOLUTIONS

MACIEJ J. CAPIŃSKI AND KLAUDIUSZ WÓJCIK

(Communicated by Carmen C. Chicone)

Abstract. The method of isolating segments is introduced in the context of
Carathéodory systems. We define isolating segments and extend the results of

Srzednicki (1994) to Carathéodory systems.

1. Introduction

In [S] Roman Srzednicki introduced a geometric method for detecting periodic
solutions in nonautonomous periodic differential equations based on the notion of
isolating segments. In all practical applications the segments are manifolds with
corners contained in the extended phase space, such that at any point on the bound-
ary of the segment the vector field is transversal to the boundary, except the points
of external tangency.

In this paper we extend the method of Srzednicki to differential equations, with
Carathéodory right-hand sides. We obtain a periodic solution of a Carathéodory
system as a limit of periodic solutions to a system of ODE approximating consid-
ered Carathéodory system. First we prove that one can choose the approximating
sequence of DE’s in such a way that their isolating segments (see def below) coin-
cide with the isolating segment of the initial system. By Srzednicki’s result [S] this
will imply the existence of periodic solutions to approximating equations. From the
sequence of these periodic solutions we can choose a subsequence which converges
uniformly to a periodic solution for the Carathéodory system.

As an application we consider the work of Andres in [A] and next of Górniewicz
and Andres in [G] (see also [AGJ]) presenting a nontrivial example of the application
of the Nielsen fixed point theory to the investigation of existence and multiplicity
of periodic solutions to Carathéodory systems. The problem was suggested by
Leray at the International Congress of Mathematicians in 1950. Andres’ approach
is based on an appropriate functional setting together with the Nielsen theory for
a compact map on a metric ANR. Unfortunately there seems to be a gap in the
proof presented by Andres. Moreover it seems that Theorem 2 in [A] can be proved
using simple geometric arguments.
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2. Preliminaries

Rn is a Euclidean space with a · scalar product and a ‖ ‖ norm. ∆ ⊂ Rn,
I = [0, T ]. ∇Fdenotes the gradient of F . Let us consider a Carathéodory system

(i) ẋ = F (t, x)

where F : R × Rn → Rn is a T periodic function. Put Ω = R × Rn. F is
Carathéodory in Ω if

(1) F (t, ·) is continuous for a.a. t,
(2) the function F (·, x) is measurable for all x, and ‖F (·, x)‖ ≤ φ(t), for all x,

φ integrable.
Let us introduce the definition of an isolating segment for Carathéodory systems.

Assume that
V1, . . . , Vk : Rn → R

are C1 functions. Let 0 ≤ r ≤ k. We define a pair of subsets (W0,W
−
0 ) ⊂ Rn by

(1) W0 = {x ∈ Rn : ∀i ∈ {1, . . . , k} Vi(x) ≤ 0},

(2) W−0 = {x ∈W0 : ∃1 ≤ i ≤ r Vi(x) = 0}.
Let

W = [0, T ]×W0, W
− = [0, T ]×W−0 .

Definition 1. We call W a periodic isolating segment over I and W− the exit set
of W if

(S1)

(3) F (t, x) · ∇Vi(x) > 0,

for all 1 ≤ i ≤ r a.e. in I and x ∈W0, such that Vi(x) = 0.
(S2)

(4) F (t, x) · ∇Vi(x) < 0,

for all r + 1 ≤ i ≤ k a.e. in I and x ∈W0, such that Vi(x) = 0.
(S3) W0, W−0 are compact ENR’s.

If F is continuous in t, then we assume that the inequalities (3) and (4) hold for
all t ∈ [0, T ].

The theorem below generalizes Theorem 7.1 in [S], to the case equations without
uniqueness.

Theorem 1. Assume that F is continuous and W is a periodic isolating segment
over [0, T ] for F . If the Euler-Poincaré characteristic χ(W0,W

−
0 ) 6= 0, then there

exists an x ∈ W0 such that there is a solution of (i) through x, T periodic and
contained in W .

Proof. Assume first that F is locally Lipschitzian with respect to x. Let P be
a Poincaré map (i.e. a map after time T ) associated to F . It was proved by
Srzednicki that FW (the set of fixed points of the Poincaré map P whose trajectories
are contained in the segment W for all times) is open and compact in the set of
fixed points of the Poincaré map, and the fixed point index ind(P, FW ) is equal to
χ(W0,W

−
0 ); therefore the theorem is true for functions locally Lipschitzian with

respect to x.
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Let us now consider the continuous case

x′ = F (x, t)

where W is an isolating segment for F . Since W is compact, there exists a sequence
(Fn)+∞

n=1 of locally Lipschitzian functions with respect to x, uniformly converging
to F . Since the inequalities (3) and (4) are strict, there exists an N > 0 such that
for all n > N the set W is an isolating segment for Fn. For all n > N there exists
an xn in W0 such that the trajectory of the solution of

x′ = Fn(x, t)

starting from xn is T periodic and contained in W . Since W0 is compact there
exists x0 ∈W0, and a subsequence of (xn) converging to x0. The trajectory of the
solution of

x′ = F (x, t)
starting from x0 is T periodic and contained in W .

The following theorem will later allow us to approximate the solution for a Ca-
rathéodory system with the solutions of ordinary differential equations.

Theorem 2 ([H, N]). Let {fν} be Carathéodory and let

limν→∞

∫
I

supx∈∆|fν(t, x) − f(t, x)|dt = 0

for every compact rectangle I × ∆ ⊆ Ω. Moreover, let {Pν}, Pν = (tν , ξν) be a
sequence in Ω with limPν = P0 = (t0, ξ0). Suppose that for any ν ∈ N , the function
xν is a solution of the initial value problem

ẋ = fν(t, x), x(tν) = ξν .

Then there exists a solution x of the problem

ẋ = f(t, x), x(t0) = ξ0,

and a subsequence {xkν} of {xν} such that

limxkν = x,

uniformly on compact subintervals of Domx.

3. Main result

Theorem 3. Let F ∈ Carloc(Ω) be T periodic and bounded on compact subsets of
Ω. If W is an isolating segment for F over [0, T ] and χ(W0,W

−
0 ) 6= 0, then there

exists an x ∈ W0 such that its trajectory is T periodic and is contained in W .

The basic idea of the proof of Theorem 3 is to combine Theorems 1 and 2. In
order to do that we need the functions in Theorem 2 to be continuous. The following
lemma will allow us to have that.

Lemma 4. Let F ∈ Carloc(Ω), be T periodic. Assume that F is bounded on
compact subsets of Ω. Put I = [0, T ]. Then for any compact rectangle I ×∆ and
any ε > 0 there exists a continuous function F0 : I ×∆→ Rn such that∫

I

supx∈∆|F0(t, x) − F (t, x)|dt ≤ ε.

Furthermore, if W ⊂ I ×∆ is a periodic isolating segment over I for F , then W is
an isolating segment for F0.
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Proof. Let I ×∆ be fixed. There exists C > 0 such that |F|I×∆| < C. Note that
C(∆) with the supremum norm is a separable Banach space.

Let us define Φ(t) := F (t, ·), t ∈ I. The function Φ : I → C(∆) is measurable.
By Luzin’s Theorem [F], for any ε > 0 there exists a compact set K such that

µ(I \K) ≤ ε and Φ|K is continuous.
There exists a set B ⊂ I such that µ(B) = µ(I) and for any a ∈ B the inequalities

(3) and (4) hold.
For any a ∈ K there exists an open neighborhood Ua such that

‖Φ(t)− Φ(a)‖ ≤ ε,
for any t ∈ K ∩ Ua.

For some a0 ∈ (I \K) ∩B we put Ua0 = I \K.
Since B is of a full measure in [0, T ], Uaj ∩B 6= ∅ for all j ∈ {1, . . . , N}. Hence

we can choose a finite covering Ua1 , . . . , UaN of K such that

I ⊂ Ua0 ∪ Ua1 ∪ . . . ∪ Uam ,

(5) ∀j ∈ {0, 1, . . . , N}, aj ∈ B.
Let us take a partition of unity

φj ∈ C0(Uaj , [0, 1]), j = 0, 1, . . . , N,

(6) φ0 + φ1 + . . .+ φN = 1,

on I. Now we can define

(7) F0(t, x) :=
N∑
j=0

φj(t)F (aj , x) for (t, x) ∈ I ×∆.

For any t ∈ K we have t /∈ suppφ0 ⊂ I \K, so

‖F0(t, ·)− Φ(t)‖=‖
N∑
j=1

φj(t)Φ(aj)−
N∑
j=1

φj(t)Φ(t)‖ ≤
N∑
j=1

φj(t)‖Φ(aj)− Φ(t)‖ ≤ ε.

We know that ‖F (t, ·)‖ ≤ C, t ∈ I, so∫
I

supx∈∆|F0(t, x)− F (t, x)|dt =
∫
I

‖F0(t, ·)− F (t, ·)‖dt

=
∫
I\K
‖F0(t, ·)− F (t, ·)‖dt

+
∫
K

‖F0(t, ·)− F (t, ·)‖dt

≤ µ(I \K)2C + µ(K)ε
≤ (2C + µ(K))ε.

We prove that if W ⊂ I ×∆, then the conditions (S1) and (S2) hold for F0 with
any t ∈ I. Let (t, x) ∈ W , i0 ∈ {1, . . . , r} (resp. i0 ∈ {r + 1, . . . , k}), be such that
Vi0(x) = 0. Then by (3) (resp. (4)), (5) and (6)

F0(t, x) · ∇Vi0 (x) =
N∑
j=0

φj(t)F (aj , x) · ∇Vi0 (x) > 0 (resp. < 0).
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Proof of Theorem 3. Let us choose I and ∆ such that W ⊂ I ×∆. From Lemma
4 we know that there exists a sequence of continuous functions Fn such that∫

I

supx∈∆|Fn(t, x) − F (t, x)|dt ≤ 1
n

and W is an isolating segment for all Fn. By Theorem 1 we know that for every n
there exists a point xn ∈ W0 such that the trajectory φn generated by Fn, starting
from xn, is periodic and contained in W . Since W0 is compact, there exists a
subsequence {xνn} of {xn} and a point x0 ∈ W such that limxνn = x0. From
Theorem 2 we know that there exists a trajectory φ which is a solution of the
problem

ẋ = F (t, x), x(0) = x0,

and a subsequence {φνkn } of {φνn} such that

limφνkn = φ

uniformly on I.

4. Example of applications

Consider the planar nonautonomous system (∗) of the form

x′ = −ax+ e(t, x, y)y
1
m + g(t, x, y) = F1(t, x, y),

y′ = −by + f(t, x, y)x
1
n + h(t, x, y) = F2(t, x, y),

(∗)

where e, f , g, h : R×R2 → R are Carloc(R×R2 ) functions, T periodic in t (T > 0).
Moreover F = (F1, F2) is bounded on the compact subsets of R× R2.

The system (∗) was presented by Jan Andres in [A] and next by Górniewicz and
Andres in [AG] as a nontrivial example of an application of the Nielsen fixed point
theory.

Theorem 5 ([A]). Assume that

(1) the functions g, h are bounded by positive constants G and H, respectively,
(2) there are positive constants e0, f0, δ1, δ2 such that

0 < e0 < e(t, x, y),

for a.a. t ∈ [0, T ] such that (t, x, y) ∈ (R×{δ1}× [δ2 ,+∞))∪ (R×{−δ1}×
(−∞,−δ2 ]) and

0 < f0 < f(t, x, y),

for a.a. t such that (t, x, y) ∈ (R × [δ1 ,+∞) × {δ2}) ∪ (R × (−∞,−δ1 ] ×
{−δ2}),

(3) ab > 0,
(4) m, n are odd integers with min(m,n) ≥ 3,
(5)

1
|a| (e0δ

1
m
2 −G) > δ1,

1
|b| (f0δ

1
n
1 −H) > δ2.
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(6) there are positive constants r, M , α, β such that α+ 1
m < 1, β+ 1

n < 1 and

|e(t, x, y)| ≤M |x|α

for |x| ≥ r and a.a. t ∈ [0, T ], y ∈ R,

|f(t, x, y)| ≤M |y|β

for |y| ≥ r and a.a. t ∈ [0, T ], x ∈ R.
Then the system (∗) admits at least three T periodic solutions.

Remark 6. One can check that the sharp inequalities (10) considered by Andres
in the periodic case imply (5). Moreover, instead of the boundedness assumption
applied in [A] we use a more general assumption (6).

Proof of Theorem 5. Let F = (F1, F2). We assume that a, b are positive. Replacing
t by −t it is clear that the same result also holds for (∗) with negative constants. �

During the course of the proof we will prove several inequalities, which will later
allow us to define appropriate isolating segments, from which we will obtain the
result.

Lemma 7. Let R > 0 be sufficiently large. Then for all a.a. t ∈ [0, T ]
(I) F1(t, R, y) < 0, if |y| ≤ R,

(II) F1(t,−R, y) > 0, if |y| ≤ R,
(III) F2(t, x,R) < 0, if |x| ≤ R,
(IV) F2(t, x,−R) > 0, if |x| ≤ R.

Proof. (I) |y| ≤ R and t ∈ [0, T ], so

F1(t, R, y) ≤ −aR+ |e(t, R, y)|R 1
m +G

≤ −aR+MRα+ 1
m +G < 0

provided R is large enough.
(II) For |y| ≤ R and t ∈ [0, T ] we have

F1(t,−R, y) ≥ aR− |e(t,−R, y)|R 1
m −G

≥ aR−MRα+ 1
m −G > 0

provided R is large enough.
(III) For y = R, |x| ≤ R and t ∈ [0, T ] we have

F2(t, x,R) ≤ −bR+ |f(t, x, y)|R 1
n +H

≤ −bR+MRβ+ 1
n +H < 0

provided R is large enough.
(IV) For y = −R, |x| ≤ R and t ∈ [0, T ] we have

F2(t, x,−R) ≥ bR− |f(t, x,−R)|R 1
n −H

≥ bR−MRβ+ 1
n −H > 0

provided R is large enough.

Lemma 8. For a.a. t ∈ [0, T ] the following conditions hold:
(A) F1(t, δ1, y) > 0 for y ≥ δ2,
(B) F2(t, x, δ2) > 0 for x ≥ δ1,
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(C) F1(t,−δ, y) < 0 for y ≤ −δ2,
(D) F2(t, x,−δ2) < 0 for x ≤ −δ1.

Proof. By (1), (5)

F1(t, δ1, y) ≥ −aδ1 + e0δ
1
m
2 −G > 0

for y ≥ δ2,

F2(t, x, δ2) ≥ −bδ2 + f0δ
1
n
1 −H > 0

for x ≥ δ1,

F1(t,−δ1, y) ≤ aδ1 − e0δ
1
m
2 +G > 0

for y ≤ −δ2,

F2(t, x,−δ2) ≤ bδ2 − f0δ
1
n
1 +H < 0.

for x ≤ −δ1.
Let W = [0, T ]× [−R,R]× [−R,R]. By Lemmas 7 and 8, the sets

W = [0, T ]× [−R,R]× [−R,R],

V = [0, T ]× [δ1, R]× [δ2, R],

U = [0, T ]× [−δ1,−R]× [−δ2,−R],

Z = cl(W \ (U ∪ V )),

are the periodic isolating segments for F over [0, T ] . Since U− = V − = ∅ and

χ(U0, U
−
0 ) = χ(V0, V

−
0 ) = 1,

by Theorem 3 there are two T periodic solutions, one contained in U and one in
V . One can check that Z−0 has two components:

[0, T ]× [δ1, R]× {δ2} ∪ [0, T ]× {δ1} × [δ2, R]

and

[0, T ]× [−R,−δ1]× {δ2} ∪ [0, T ]× {−δ1} × [−R,−δ2].

Since χ(Z0, Z
−
0 ) = −1, again by Theorem 3 the third T periodic solution is con-

tained in Z.

Remark 9. It follows by the proof that the existence of two periodic solutions
(contained in the segments U and V ) can also be deduced by the Brouwer fixed
point theorem.

In the work of Andres and Górniewicz [AG] the example is also considered.

Remark 10 ([AG]). On the basis of the Schauder fixed point theorem one can get
only one T periodic solution of (∗). If, additionally, condition (2) holds for a.a.
t ∈ [0, T ] and all (x, y) ∈ R2, then at least three T periodic solutions of (∗) can also
be deduced by means of the fixed-point index technique or at least two T periodic
solutions, when applying the Schauder fixed-point theorem.
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5. Remark on the approach by Nielsen fixed point theory

In [A], a different approach to the problem is considered. Condition (2) is more
restrictive:

(2)′ For x ≥ −δ1, y ≥ δ2 and a.a. t as well as for x ≤ δ1, y ≤ −δ2 and a.a. t

0 < e0 < e(t, x, y).

For x ≥ δ1, y ≤ δ2 and a.a. t as well as for x ≤ −δ1, y ≥ −δ2 and a.a. t

0 < f0 < f(t, x, y).

The problem is approached by the application of the following theorem.

Theorem 11. Let G : J ×Rn ×Rn → Rn be a Carathéodory mapping, where J is
an arbitrary interval. Assume, furthermore, that there exists a (nonempty) closed
connected subset Q of C(J,Rn) such that the problem

X ′ = G(t,X, q(t)), X ∈ S,
has, for every q ∈ Q, a unique solution X(t) = T (q) with the property cl(T (Q)) ⊂ S,
where S is a (nonempty) bounded subset of C(J,Rn), and T : Q→ S is retractable
onto Q.

At last there exists a locally Lebesgue-integrable function α : J → R such that

|G(t,X(t), q(t))| ≤ α(t) a.e. in J,

for any pair (q,X) ∈ ΓT , where ΓT denotes the graph of T .
Then the Carathéodory system

X ′ = F (t,X)

admits at least N(r|T (Q)◦T (.)) solutions belonging to Q, provided G(t, c, c) = F (t, c)
takes place a.e. in J, for any c ∈ Rn.

As the constraint S, the following set is considered:

S = Q = Q1 ∩Q2 ∩Q3 ,

where
Q1 = {q(t) ∈ C([0, ω],R2) : ‖q(t)‖ = max[maxt∈[0,ω]|q1(t)|,

maxt∈[0,ω]|q2(t)|] ≤ R},
Q2 = {q(t) ∈ C([0, ω],R2) : mint∈[0,ω]|q1(t)| ≥ δ1 > 0

or mint∈[0,ω]|q2(t)| ≥ δ2 > 0},
Q3 = {q(t) ∈ C([0, ω],R2) : q(0) = q(ω)}.

The Carathéodory mapping takes the form

x′ + ax = e(t, q1(t), q2(t))q2(t)
1
m + g(t, q1(t), q2(t)),

y′ + by = f(t, q1(t), q2(t))q1(t)
1
n + h(t, q1(t), q2(t)).

For each q ∈ Q the problem has a unique solution T (q),

T (q) =
{
x(t) =

∫ ω
0
G1(t, s)[e(s, q1(s), q2(s))q2(s)

1
m + g(s, q1(s), q2(s))]ds,

y(t) =
∫ ω

0
G2(t, s)[f(s, q1(s), q2(s))q1(s)

1
n + h(s, q1(s), q2(s))]ds,

where

G1(t, s) =

{
e−a(t−s+ω)

1−e−aω for 0 ≤ t ≤ s ≤ ω,
e−a(t−s)

1−e−aω for 0 ≤ s ≤ t ≤ ω,
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G2(t, s) =

{
e−b(t−s+ω)

1−e−bω for 0 ≤ t ≤ s ≤ ω,
e−b(t−s)

1−e−bω for 0 ≤ s ≤ t ≤ ω.
In order to apply Theorem 11, it is necessary to check that cl(T (Q)) ⊂ S = Q.

This condition need not always be satisfied. The problem lies with the condition
T (Q) ⊂ Q2. As an example let us choose a problem with g = h = 0. The solution
for t = 0 is

x(0) =
∫ ω

0

e−a(ω−s)

1− e−aω e(s, q1(s), q2(s))q2(s)
1
m ds,

y(0) =
∫ ω

0

e−b(ω−s)

1− e−bω f(s, q1(s), q2(s))q1(s)
1
n ds.

It is possible to choose (q1, q2) ∈ Q and bounded e, f satisfying condition (2)′, such
that x(0) = y(0) = 0, hence T ((q1, q2)) /∈ Q2.
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