Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite approximate Peano derivatives


Author: Hajrudin Fejzic
Journal: Proc. Amer. Math. Soc. 131 (2003), 2527-2536
MSC (2000): Primary 26A24; Secondary 26A21
DOI: https://doi.org/10.1090/S0002-9939-02-06828-4
Published electronically: October 15, 2002
MathSciNet review: 1974651
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce approximate Peano derivatives with infinite values allowed, and we show that these derivatives are Baire one, and possess the Darboux and Denjoy-Clarkson properties. Also we show that if they are bounded from above or below on an interval, then the corresponding ordinary derivatives exist and equal the approximate Peano derivatives.


References [Enhancements On Off] (What's this?)

  • 1. S. J. Agronsky, R. Biskner, A. M. Bruckner and J. Marík, Representations of Functions by Derivatives, Trans. Amer. Math. Soc. 263 (2) (1981), 493-500. MR 82e:26006
  • 2. J. Clarkson, A Property of Derivatives, Bull. Amer. Math. Soc. 53 (1947), 124-125. MR 8:451e
  • 3. H. Fejzic, The Peano Derivatives, Ph.D. Dissertation, Michigan State University (1992).
  • 4. H. Fejzic, On Approximate Peano Derivatives, Acta Math. Hungar. 65 (4) (1994), 319-332. MR 95f:26006
  • 5. H. Fejzic, J. Marík and C. Weil, Extending Peano Derivatives, Mathematica Bohemica, 119 (1994), 387-406. MR 96c:26003
  • 6. H. Fejzic and D. Rinne, Peano Path Derivatives, Proc. Amer. Math. Soc. 125 (9) (1997), 2651-2656. MR 97j:26004
  • 7. M. Laczkovich, D. Preiss and C. Weil, On Unilateral and Bilateral nth Peano Derivatives, Proc. Amer. Math. Soc. 99 (1987), 129-134. MR 88d:26009
  • 8. C-M. Lee, On the Approximate Peano Derivatives, J. London Math. Soc. (2) 12 (1976), 475-478. MR 53:3222
  • 9. J. Lipinski, Sur la discontinuité approximative et la dérivée approximative, Colloq. Math. 10 (1963), 103-109. MR 27:246
  • 10. L. Misik, Bemerkungen über Approximative Ableitung, Mat. Cas. 19 (1969), 283-292. MR 46:1977
  • 11. D. Preiss, Approximate Derivatives and Baire Classes, Czech. Math. J. 21 (1971), 373-382. MR 44:4158
  • 12. S. Verblunsky, On the Peano Derivatives, Proc. London Math. Soc. 33 (1971), 313-324. MR 44:2896
  • 13. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge (1991).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 26A24, 26A21

Retrieve articles in all journals with MSC (2000): 26A24, 26A21


Additional Information

Hajrudin Fejzic
Affiliation: Department of Mathematics, California State University, San Bernardino, California 92407
Email: hfejzic@csusb.edu

DOI: https://doi.org/10.1090/S0002-9939-02-06828-4
Received by editor(s): January 5, 2001
Received by editor(s) in revised form: March 27, 2002
Published electronically: October 15, 2002
Communicated by: David Preiss
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society