Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Some remarks on spreading models and mixed Tsirelson spaces

Author: A. Manoussakis
Journal: Proc. Amer. Math. Soc. 131 (2003), 2515-2525
MSC (2000): Primary 46B03, 46B20, 46B45
Published electronically: November 14, 2002
MathSciNet review: 1974650
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if a Banach space with a bimonotone shrinking basis does not contain $\ell_{1}^{\omega}$ spreading models but every block sequence of the basis contains a further block sequence which is a $c-\ell_{1}^{n}$ spreading model for every $n\in\mathbb{N}$, then every subspace has a further subspace which is arbitrarily distortable. We also prove that a mixed Tsirelson space $T[(\mathcal{S}_{n},\theta_{n})_{n}]$, such that $\theta_{n}\searrow 0$, does not contain $\ell_{1}^{\omega2}$ spreading models.

References [Enhancements On Off] (What's this?)

  • [1] D.E. Alspach and S.A. Argyros, Complexity of weakly null sequences, Dissertationes Mathematicae 321 (1992), 1-44. MR 93j:46014
  • [2] G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math.109(1999), 125-149. MR 2000f:46012
  • [3] S.A. Argyros and I. Deliyanni, Examples of asymptotic $\ell_1$ Banach spaces, Trans. Amer. Math. Soc. 349 (1997), 973-995. MR 97f:46021
  • [4] S.A. Argyros, I. Deliyanni, D.N. Kutzarova and A. Manoussakis, Modified mixed Tsirelson spaces, Journal of Funct. Analysis 159(1998), 43-109. MR 2000j:46031
  • [5] S.A. Argyros, I. Deliyanni, A. Manoussakis, Distortion and Spreading models in Modified mixed Tsirelson spaces, preprint.
  • [6] S.A. Argyros, I. Gasparis, Unconditional Structures of weakly null sequences, Trans. of AMS, 353 (2001), 2019-2058. MR 2002b:46012
  • [7] S.A. Argyros, S. Mercourakis, A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193. MR 99m:46021
  • [8] S.A. Argyros, A. Tolias, Methods in the Theory of Hereditarily Indecomposable Banach Spaces, preprint.
  • [9] I. Gasparis, A Continuum of totally incomparable Hereditarily Indecomposable Banach spaces, to appear in Studia Math.
  • [10] I. Gasparis, Strictly Singular non-compact operators on Hereditarily Indecomposable Banach spaces, to appear in Proc. Amer. Math. Soc.
  • [11] D.N. Kutzarova, P.K. Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc. 128 (2000), 2059-2068. MR 2000m:46031
  • [12] A. Manoussakis, On the structure of a certain class of mixed Tsirelson spaces, Positivity 5 (2001), 193-238. MR 2002g:46021
  • [13] E. Odell and Th. Schlumprecht, On the richness of the set of p's in Krivine's theorem, Oper. Theory, Adv. Appl. 77 (1995), 177-198. MR 96i:46015
  • [14] E. Odell and Th. Schlumprecht, A problem on spreading models, Journal of Funct. Analysis 153 (1998), 249-261. MR 99c:46006
  • [15] E.Odell, N. Tomczak-Jaegermann, R.Wagner, Proximity to $\ell_{1}$ and distortion in asymptotic $\ell_{1}$ spaces, Journal of Funct. Analysis 150 (1997), 101-145.
  • [16] Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81-95. MR 93h:46023
  • [17] B.Tsirelson, Not every Banach space contains $\ell_{p}$ or $c_0$, Funct. Anal. Appl. 8 (1974), 138-141.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B03, 46B20, 46B45

Retrieve articles in all journals with MSC (2000): 46B03, 46B20, 46B45

Additional Information

A. Manoussakis
Affiliation: Department of Sciences, Technical University of Crete, 73100 Chania, Greece

PII: S 0002-9939(02)06832-6
Keywords: Schreier families, spreading model
Received by editor(s): November 13, 2001
Received by editor(s) in revised form: March 24, 2002
Published electronically: November 14, 2002
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2002 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia