Some remarks related to De Giorgi's conjecture

Authors:
Yihong Du and Li Ma

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2415-2422

MSC (2000):
Primary 35J15, 35J60

Published electronically:
November 27, 2002

MathSciNet review:
1974639

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For several classes of functions including the special case , we obtain boundedness and symmetry results for solutions of the problem defined on . Our results complement a number of recent results related to a conjecture of De Giorgi.

**[AAC]**G. Alberti, L. Ambrosio and X. Cabre, On a long-standing conjecture of E. De Giorgi: old and recent results, to appear in Acta Applicandae Mathematicae.**[AC]**Luigi Ambrosio and Xavier Cabré,*Entire solutions of semilinear elliptic equations in 𝐑³ and a conjecture of De Giorgi*, J. Amer. Math. Soc.**13**(2000), no. 4, 725–739 (electronic). MR**1775735**, 10.1090/S0894-0347-00-00345-3**[AW]**D. G. Aronson and H. F. Weinberger,*Multidimensional nonlinear diffusion arising in population genetics*, Adv. in Math.**30**(1978), no. 1, 33–76. MR**511740**, 10.1016/0001-8708(78)90130-5**[BBG]**Martin T. Barlow, Richard F. Bass, and Changfeng Gui,*The Liouville property and a conjecture of De Giorgi*, Comm. Pure Appl. Math.**53**(2000), no. 8, 1007–1038. MR**1755949**, 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L**[BCN1]**H. Berestycki, L. A. Caffarelli, and L. Nirenberg,*Monotonicity for elliptic equations in unbounded Lipschitz domains*, Comm. Pure Appl. Math.**50**(1997), no. 11, 1089–1111. MR**1470317**, 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6**[BCN2]**Henri Berestycki, Luis Caffarelli, and Louis Nirenberg,*Further qualitative properties for elliptic equations in unbounded domains*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**25**(1997), no. 1-2, 69–94 (1998). Dedicated to Ennio De Giorgi. MR**1655510****[BHM]**H. Berestycki, F. Hamel, and R. Monneau,*One-dimensional symmetry of bounded entire solutions of some elliptic equations*, Duke Math. J.**103**(2000), no. 3, 375–396. MR**1763653**, 10.1215/S0012-7094-00-10331-6**[CGS]**Luis Caffarelli, Nicola Garofalo, and Fausto Segàla,*A gradient bound for entire solutions of quasi-linear equations and its consequences*, Comm. Pure Appl. Math.**47**(1994), no. 11, 1457–1473. MR**1296785**, 10.1002/cpa.3160471103**[DD]**E.N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations, to appear in Proc. Amer. Math. Soc.**[dG]**Ennio De Giorgi,*Convergence problems for functionals and operators*, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978) Pitagora, Bologna, 1979, pp. 131–188. MR**533166****[DM]**Yihong Du and Li Ma,*Logistic type equations on ℝ^{ℕ} by a squeezing method involving boundary blow-up solutions*, J. London Math. Soc. (2)**64**(2001), no. 1, 107–124. MR**1840774**, 10.1017/S0024610701002289**[F1]**Alberto Farina,*Symmetry for solutions of semilinear elliptic equations in 𝑅^{𝑁} and related conjectures*, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.**10**(1999), no. 4, 255–265 (English, with English and Italian summaries). MR**1767932****[F2]**Alberto Farina,*Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in 𝑅^{𝐾}*, Differential Integral Equations**11**(1998), no. 6, 875–893. MR**1659256****[Fr]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[GG]**N. Ghoussoub and C. Gui,*On a conjecture of De Giorgi and some related problems*, Math. Ann.**311**(1998), no. 3, 481–491. MR**1637919**, 10.1007/s002080050196**[GT]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**

David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364****[Ke]**J. B. Keller,*On solutions of Δ𝑢=𝑓(𝑢)*, Comm. Pure Appl. Math.**10**(1957), 503–510. MR**0091407****[M]**Luciano Modica,*A gradient bound and a Liouville theorem for nonlinear Poisson equations*, Comm. Pure Appl. Math.**38**(1985), no. 5, 679–684. MR**803255**, 10.1002/cpa.3160380515**[MM]**Luciano Modica and Stefano Mortola,*Some entire solutions in the plane of nonlinear Poisson equations*, Boll. Un. Mat. Ital. B (5)**17**(1980), no. 2, 614–622 (English, with Italian summary). MR**580544**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J15,
35J60

Retrieve articles in all journals with MSC (2000): 35J15, 35J60

Additional Information

**Yihong Du**

Affiliation:
School of Mathematical and Computer Sciences, University of New England, Armidale, New South Wales 2351, Australia

Email:
ydu@turing.une.edu.au

**Li Ma**

Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China

Email:
lma@math.tsinghua.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-02-06867-3

Keywords:
Elliptic equation,
maximum principle,
symmetry of solution

Received by editor(s):
March 10, 2002

Published electronically:
November 27, 2002

Additional Notes:
The first author was partially supported by the Australian Academy of Science and Academia Sinica under an exchange program while part of this work was carried out. The second author was partially supported by a grant from the national 973 project of China and a scientific grant of Tsinghua University at Beijing.

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2002
American Mathematical Society