ON A CHARACTERIZATION
OF THE MAXIMAL IDEAL SPACES OF
ALGEBRAICALLY CLOSED COMMUTATIVE C^*-ALGEBRAS

TAKESHI MIURA AND KAZUKI NIJIMA

(Communicated by N. Tomczak-Jaegermann)

Abstract. Let $C(X)$ be the algebra of all complex-valued continuous functions on a compact Hausdorff space X. We say that $C(X)$ is algebraically closed if each monic polynomial equation over $C(X)$ has a continuous solution. We give a necessary and sufficient condition for $C(X)$ to be algebraically closed for a locally connected compact Hausdorff space X. In this case, it is proved that $C(X)$ is algebraically closed if each element of $C(X)$ is the square of another. We also give a characterization of a first-countable compact Hausdorff space X such that $C(X)$ is algebraically closed.

1. Introduction

Let X be a compact Hausdorff space and $C(X)$ the commutative Banach algebra of all complex-valued continuous functions on X. Let $P(x, z)$ be a monic polynomial over $C(X)$. That is, $P(x, z) = z^n + a_{n-1}(x)z^{n-1} + \cdots + a_1(x)z + a_0(x)$ ($x \in X$) for some natural number n and some $a_0, a_1, \ldots, a_{n-1} \in C(X)$. We say that $C(X)$ is algebraically closed if $P(x, z) = 0$ has a root in $C(X)$ for every monic polynomial $P(x, z)$ over $C(X)$; that is, there exists an $f \in C(X)$ such that $P(x, f(x)) = 0$ on X. If to every $a_0 \in C(X)$ there corresponds a $g \in C(X)$ so that $a_0(x) = g^2(x)$ for every $x \in X$, then we say that $C(X)$ is square-root closed. By definition, if $C(X)$ is algebraically closed then the algebra is square-root closed.

Deckard and Pearcy [3] prove that $C(X)$ is algebraically closed if X is a Stonian space: a compact Hausdorff space which is also extremely disconnected. In [4] they consider two spaces: a totally disconnected compact Hausdorff space; a linearly ordered and order-complete topological space. In both cases, algebraic closedness is proved. It is also noted that $C(X)$ need not be square-root closed. Indeed, there is no continuous function on S^1, the unit circle in the complex plane \mathbb{C}, whose square is the identity function on S^1 (cf. [2] Lemma 2.1)). On the other hand, $C([0,1])$ is algebraically closed by [3, Theorem 2]. Here $[0,1]$ denotes the closed unit interval.

Countryman [2] gives some necessary and sufficient conditions for a first-countable compact Hausdorff space X in order that $C(X)$ be algebraically closed. In this case, $C(X)$ is algebraically closed if and only if X is hereditarily unicoherent.

Received by the editors April 24, 2001 and, in revised form, April 10, 2002.
2000 Mathematics Subject Classification. Primary 46J10.
Key words and phrases. Commutative Banach algebras, maximal ideal spaces.

©2002 American Mathematical Society
and almost locally connected; intuitively X contains neither S^1 nor the closure of $\bigcup_{n \in \mathbb{N}} \{(1/n) \times [0,1]\}$ in \mathbb{R}^2 with its usual topology. Here and after, \mathbb{N} and \mathbb{R} denote the space of all natural numbers and that of real numbers, respectively. It is also proved, for such X, that $C(X)$ is algebraically closed if the algebra is square-root closed. On the other hand, this is not the case unless X is first-countable. In fact, he gives a compact Hausdorff space X that is not first-countable with the following property: each function of $C(X)$ has a continuous 2^nth root for every $n \in \mathbb{N}$, while some function has no continuous fifth root ([2, Remark (3)]).

Recall that a uniform algebra on a compact Hausdorff space X is a uniformly closed subalgebra of $C(X)$ which contains the constants and separates the points of X. Let A be a uniform algebra on a locally connected compact Hausdorff space X. Čirka [1] proved that $A = C(X)$, if each function of A is the square of another. As noted above, $C(X)$ need not be square-root closed even if X is locally connected. In [6], a characterization is given of a locally connected compact Hausdorff space X such that $C(X)$ be square-root closed: A necessary and sufficient condition in order that $C(X)$ be square-root closed is as follows.

(2) The covering dimension of X is less than or equal to 1, and the first Čech cohomology group with integer coefficient is trivial.

The condition (2) need not be necessary nor sufficient for $C(X)$ being square-root closed, unless X is locally connected. On the other hand, if X satisfies (2) then $C(X)$ is “almost” square-root closed, even if X is not locally connected, in the following sense: For every $\varepsilon > 0$ and every $f \in C(X)$ with $\|f\|_\infty \leq 1$, there exist $g, h \in C(X)$ such that $f = gh$ and $\|g - h\|_\infty \leq \varepsilon$. Here $\|\cdot\|_\infty$ denotes the supremum norm on X (cf. [3], Theorem 2.1).

In this paper we consider a locally connected compact Hausdorff space X which need not be first-countable. In a way similar to the arguments in [2], we show that $C(X)$ is algebraically closed if and only if $C(X)$ is square-root closed. They are also equivalent to the condition that X is hereditarily unicoherent. When these conditions are satisfied, then X has a base for the topology whose elements have at most finitely many boundary points. In terms of the covering dimension and the Čech cohomology group, we also give a characterization of a first-countable compact Hausdorff space X for which $C(X)$ is algebraically closed.

2. Preliminaries

We state characterization theorems obtained in [2] and [6]. To do this we need some terminology.

We say that a point p of a topological space T is of finite order, if for every open neighborhood V of p there exists an open set V_0 such that $p \in V_0 \subset V$ and that V_0 has at most finitely many boundary points. In this paper we say that a compact Hausdorff space X is an A-space, if each point of X is of finite order. Note that the definition of an A-space is not the same in [2]. However, for compact Hausdorff spaces, the two definitions are shown to be equivalent; see [2, p. 440].

A C-space is a compact Hausdorff space X such that $C(X_\lambda)$ is algebraically closed for every connected component X_λ. For simplicity we say that a compact Hausdorff space X is an AC-space, if X is both an A-space and a C-space.

We say that a topological space T is almost locally connected, if T contains no mutually disjoint connected closed subsets $C_n (n \in \mathbb{N})$, which are open in the
Theorem B (Theorem 2.2, [6]). Let \(X \) be a locally connected compact Hausdorff space. Then the following conditions are equivalent:

(i) \(X \) is square-root closed.

(ii) \(\dim X \leq 1 \) and \(\check{H}^1(X, \mathbb{Z}) = 0 \).

To prove our main result, we need the following lemma.

Lemma C (Lemma 2.2, [3]). Let \(X \) be a compact Hausdorff space, and \(P(x, z) \) a monic polynomial over \(C(X) \). Suppose that \(x_0 \in X \) and that \(z_0 \in \mathbb{C} \) is a root of \(P(x_0, z) = 0 \) of multiplicity \(m \). Let \(\varepsilon > 0 \) so that \(P(x_0, z) = 0 \) has no root in \(\{ z \in \mathbb{C} : 0 < |z - z_0| \leq \varepsilon \} \). Then there exists an open neighborhood \(V_0 \) of \(x_0 \) such that \(P(y, z) = 0 \) has exactly \(m \) roots, counting multiplicities, in \(\{ z \in \mathbb{C} : |z - z_0| < \varepsilon \} \) for every \(y \in V_0 \).
3. Main results

It seems natural to expect that the conditions of Theorem 3.1 have deep connections with those of Theorem 3.2. In fact, the following result holds.

Lemma 3.1. Let \(X \) be a compact Hausdorff space with \(\dim X \leq 1 \). If \(\hat{H}^1(X, \mathbb{Z}) = 0 \), then \(X \) is hereditarily unicoherent.

Proof. Suppose that \(X \) is not hereditarily unicoherent. We show that \(\hat{H}^1(X, \mathbb{Z}) \neq 0 \).

In a way similar to the proof of [2, Lemma 2.1] we see that there exist a closed subset \(F \) of \(X \) and an \(h \in C(F)^{-1} \), the set of all invertible elements of \(C(F) \), such that \(h \neq g^2 \) for all \(g \in C(F)^{-1} \). Put \(h_1 = h/|h| \in C(F)^{-1} \). Since \(\dim X \leq 1 \), we can find an \(\tilde{h}_1 \in C(X)^{-1} \) such that \(|\tilde{h}_1| = 1 \) and \(\tilde{h}_1|_F = h_1 \). Then there is no function \(f \in C(X) \) such that \(\tilde{h}_1 = f^2 \). In particular, \(\tilde{h}_1 \) does not belong to \(\exp C(X) \). Therefore, we have \(C(X)^{-1} \setminus \exp C(X) \neq \emptyset \). This implies \(\hat{H}^1(X, \mathbb{Z}) \neq 0 \), by a theorem of Arens and Royden. This completes the proof. \(\square \)

Let \(T \) be a connected topological space and \(p \) a point of \(T \). Recall that \(p \) separates the distinct points \(a \) and \(b \) of \(T \setminus \{p\} \) in \(T \), if there exist disjoint open sets \(A \) and \(B \) such that \(a \in A \), \(b \in B \) and \(T \setminus \{p\} = A \cup B \). In this case both \(A \cup \{p\} \) and \(B \cup \{p\} \) are connected. If \(p \) belongs to every connected closed subset that contains both \(a \) and \(b \), then we say that \(p \) cuts \(T \) between \(a \) and \(b \). If \(X \) is a locally connected and connected compact Hausdorff space, then by [7, Theorem 3-6], a point \(p \in X \) separates the distinct points \(a \) and \(b \) of \(X \setminus \{p\} \) in \(X \), if and only if \(p \) cuts \(X \) between \(a \) and \(b \).

Let \(X \) be a connected compact Hausdorff space and \(a, b \in X \). It is well known that there exists a minimal connected closed subset of \(X \), with respect to the set inclusion, that contains both \(a \) and \(b \) (cf. [7, Theorem 2-10]). If \(X \) is also hereditarily unicoherent, then we see that such a set is uniquely determined. In this case, \(E[a, b] \) denotes the smallest connected closed subset containing both \(a \) and \(b \). Therefore, each point of \(E[a, b] \setminus \{a, b\} \) cuts \(X \) between \(a \) and \(b \), and hence separates \(a \) and \(b \) in \(X \) by [7, Theorem 3-6], if \(X \) is a locally connected and connected compact Hausdorff space which is also hereditarily unicoherent.

The separation order \(\leq \) in \(E[a, b] \) is defined as follows: for every distinct points \(p, q \in E[a, b] \) we define \(p < q \) if \(p = a \) or if \(p \) separates \(a \) and \(q \) in \(X \). Then \(x \leq y \) means that \(x = y \) or \(x < y \). It is well known that the separation order in \(E[a, b] \) is a total order [7, Theorem 2-21]. Then the order topology in \(E[a, b] \) is defined by a base for the topology: the full space \(E[a, b] \): for every \(x \in E[a, b] \) the set of all \(y \) with \(y < x \) and the set of \(y \) with \(x < y \): for every \(x < y \) the set of all \(z \) with \(x < z < y \). By [7, Theorem 2-25], the order topology defined by the total order \(\leq \) in \(E[a, b] \) is the same as the relative topology in \(E[a, b] \).

By [7, Theorem 2-26], we see that each non-empty subset of \(E[a, b] \), which is bounded above, has at least upper bound with respect to the separation order. That is, \(E[a, b] \) is order-complete. These facts will be used later.

Lemma 3.2. Let \(X \) be a locally connected compact Hausdorff space which is also hereditarily unicoherent. Then \(X \) is an \(A \)-space.

Proof. Since \(X \) is locally connected, each connected component of \(X \) is open. Thus we may assume that \(X \) is connected. Let \(x_0 \) be any point of \(X \) and \(V \) any open neighborhood of \(x_0 \). It is enough to consider the case that \(X \setminus V \neq \emptyset \). For every \(x \in X \setminus V \), let \(E[x_0, x] \) be the smallest connected closed subset containing \(x_0 \) and \(x \).
Fix any point of $V \cap (E[x_0, x] \setminus \{x_0, x\})$, say $y(x)$. Then $y(x)$ separates x_0 and x in X as noted above. That is, there exist disjoint open sets A_x, B_x such that $x_0 \in A_x, x \in B_x$ and $X \setminus \{y(x)\} = A_x \cup B_x$. Note that $y(x)$ is the only boundary point of A_x.

Since $X \setminus V$ is compact, there are finitely many points $x_1, x_2, \ldots, x_n \in X \setminus V$ so that $X \setminus V \subset \bigcup_{j=1}^n B_{x_j}$. Put $V_0 = \bigcap_{j=1}^n A_{x_j}$. Then V_0 is an open set with $x_0 \in V_0 \subset V$. Since V_0 has at most n boundary points, the point x_0 is of finite order. That is, X is an A-space and this completes the proof.

Theorem 3.3. Let X be a locally connected compact Hausdorff space. Then the following conditions are equivalent.

(i) X is an AC-space.

(ii) X is a C-space.

(iii) $C(X)$ is algebraically closed.

(iv) $C(X)$ is square-root closed.

(v) $\dim X \leq 1$ and $H^1(X, \mathbb{Z}) = 0$.

(vi) X is hereditarily unicoherent.

Proof. Since X is locally connected, each connected component of X is open. Therefore, $C(X)$ is algebraically closed if X is a C-space. That is, (ii) implies (iii). By Theorem B and Lemma 3.1, it is enough to show that (vi) implies (i). By Lemma 3.2, it suffices to prove that X is a C-space. To do this, without loss of generality, we may assume that X is a compact Hausdorff space which is locally connected and connected.

Let $P(x, z)$ be any monic polynomial over $C(X)$. Let \mathcal{D} be the set of all pairs (D, f) of $D \subset X$ and a complex-valued continuous function f on D with the following properties:

$$E[a, b] \subset D \text{ for every } a, b \in D \text{ and } P(x, f(x)) = 0 \quad (x \in D).$$

Note that each such set D is connected since $E[a, b] \subset D (a, b \in D)$. For every $(D_1, f_1), (D_2, f_2) \in \mathcal{D}$ we define $(D_1, f_1) \preceq (D_2, f_2)$, if $D_1 \subset D_2$ and $f_2|_{D_1} = f_1$. Then \preceq is a partial order in \mathcal{D}. We denote $(D_1, f_1) \prec (D_2, f_2)$, if $(D_1, f_1) \preceq (D_2, f_2)$ and $D_1 \subsetneq D_2$.

We show that \mathcal{D} has a maximal element. To do this, let $\{D_\lambda, f_\lambda\}_{\lambda \in \Lambda}$ be any chain of \mathcal{D}. Put $D_0 = \bigcup_{\lambda \in \Lambda} D_\lambda$; then it is elementary that $a, b \in D_0$ implies $E[a, b] \subset D_0$. The function f_0 on D_0 defined by $x \mapsto f_\lambda(x)$ is well defined, where $\lambda \in \Lambda$ so that $x \in D_\lambda$. By the definition of D_0 and f_0, we have $P(x, f_0(x)) = 0$ for every $x \in D_0$. We show that f_0 is continuous on D_0. Assume to the contrary that f_0 is not continuous on D_0. That is, there exist an $x_0 \in D_0$ and an $\varepsilon_0 > 0$ such that $f_0(D_0 \cap V) \nsubseteq \{z \in \mathbb{C} : |z - f_0(x_0)| < \varepsilon_0\}$ for every open neighborhood V of x_0. Let z_1, z_2, \ldots, z_k be all the distinct roots of $P(x_0, z) = 0$. Put $2\varepsilon_1 = \min\{|z_s - z_t| : 1 \leq s < t \leq k\}$ and $\varepsilon = \min\{\varepsilon_0, \varepsilon_1\}$. If we apply Lemma C to each z_i for $1 \leq i \leq k$, we can find a connected open neighborhood $V(x_0)$ of x_0 such that $P(y, w) = 0$ implies $w \in \bigcup_{i=1}^k \{z \in \mathbb{C} : |z - z_i| < \varepsilon\}$ for every $y \in V(x_0)$. Since $f_0(D_0 \cap V(x_0)) \nsubseteq \{z \in \mathbb{C} : |z - f_0(x_0)| < \varepsilon_0\}$, there is a $y_0 \in D_0 \cap V(x_0)$ such that $|f_0(y_0) - f_0(x_0)| \geq \varepsilon_0$. Let μ be an element of Λ such that $x_0, y_0 \in D_\mu$. Since each point of $E[x_0, y_0] \setminus \{x_0, y_0\}$ separates x_0 and y_0 in X, we see that $E[x_0, y_0] \subset D_\mu \cap V(x_0)$. Therefore, we obtain $f_0(E[x_0, y_0]) = f_\mu(E[x_0, y_0]) \subset \bigcup_{i=1}^k \{z \in \mathbb{C} : |z - z_i| < \varepsilon\}$. On the other hand, $f_0(E[x_0, y_0])$ meets at least two disks of $\bigcup_{i=1}^k \{z \in \mathbb{C} : |z - z_i| < \varepsilon\}$, since
\[|f_0(y_0) - f_0(x_0)| \geq \varepsilon_0. \] This contradicts that the range \(f_\mu(E[x_0, y_0]) \) is connected. Hence, \(f_0 \) is continuous on \(D_0 \). By Zorn’s lemma we see that \(\mathcal{D} \) has a maximal element.

Let \((D^*, f^*) \) be a maximal element of \(\mathcal{D} \). Then we show that \(D^* = X \). Assume to the contrary that \(X \setminus D^* \neq \emptyset \). Then there exists a \(b \in X \setminus D^* \). Fix any element \(a \in D^* \). Put \(m \) be the least upper bound of \(E[a, b] \cap D^* \) with respect to the separation order in \(E[a, b] \). Clearly, we see that \(E[a, m] \setminus \{m\} \subset D^* \) and \(E[m, b] \setminus \{m\} \subset X \setminus D^* \). We show that \(m \in D^* \). Suppose \(m \in X \setminus D^* \); then we see that there is no continuous extension of \(f^* \) to \(D^* \cup \{m\} \). Suppose that there exists a continuous extension of \(f^* \), say \(\tilde{f}^* \). It follows that \(P(x, \tilde{f}^*(x)) = 0 \) for every \(x \in D^* \cup \{m\} \), since the function \(x \mapsto P(x, \tilde{f}^*(x)) \) is continuous on the connected set \(D^* \cup \{m\} \) and is identically 0 on \(D^* \). Therefore, we have \((D^*, f^*) \prec (D^* \cup \{m\}, \tilde{f}^*) \). This contradicts the maximality of \((D^*, f^*)\). Hence we have that there is no continuous extension of \(f^* \) to \(D^* \cup \{m\} \). Therefore, there exists a \(\delta_0 > 0 \) with the following property:

To every open neighborhood \(V \) of \(m \) there correspond \(p, q \in V \cap D^* \) so that \(|f^*(p) - f^*(q)| \geq \delta_0 \). Let \(\eta_1, \eta_2, \ldots, \eta_l \) be all the distinct roots of \(P(m, z) = 0 \). Put \(2\delta_1 = \min\{|\eta_s - \eta_t| : 1 \leq s < t \leq l\} \) and \(\delta = \min\{\delta_0, \delta_1\} \). Then by Lemma \(\text{C} \) there exists a connected open neighborhood \(V(m) \) of \(m \) such that \(P(y, w) = 0 \) implies \(w \in \bigcup_{j=1}^l \{z \in \mathbb{C} : |z - \eta_j| < \delta \} \) for every \(y \in V(m) \). Therefore, \(f^*(D^* \cap V(m)) \) is contained in \(\bigcup_{j=1}^l \{z \in \mathbb{C} : |z - \eta_j| < \delta \} \). Since each point of \(E[x, y] \setminus \{x, y\} \) separates \(x \) and \(y \) in \(X \), we have \(E[x, y] \subset V(m) \) if \(x, y \in V(m) \). Hence \(E[x, y] \subset D^* \cap V(m) \) for every \(x, y \in D^* \cap V(m) \). This implies that \(D^* \cap V(m) \) is connected. Since \(f^* \) is continuous, the range \(f^*(D^* \cap V(m)) \) is also connected. Recall that there is no continuous extension of \(f^* \), thus we can find \(p, q \in D^* \cap V(m) \) with \(|f^*(p) - f^*(q)| \geq \delta_0 \). Therefore, \(f^*(D^* \cap V(m)) \) meets at least two disks of \(\bigcup_{j=1}^l \{z \in \mathbb{C} : |z - \eta_j| < \delta \} \), though \(f^*(D^* \cap V(m)) \) is connected. We arrived at a contradiction, hence \(m \in D^* \) is proved.

Finally, since \(E[m, b] \) is a totally ordered and order-complete space, there exist \(f_1, f_2, \ldots, f_n \in C(E[m, b]) \) such that

\[
P(x, z) = (z - f_1(x))(z - f_2(x)) \cdots (z - f_n(x)) \quad (x \in E[m, b]),
\]

by \(\text{H} \) Theorem 3. Without loss of generality we may assume \(f^*(m) = f_1(m) \). Put \(\tilde{D} = D^* \cup E[m, b] \); then the function

\[
\tilde{f}(x) = \begin{cases}
 f^*(x), & (x \in D^*) \\
 f_1(x), & (x \in E[m, b])
\end{cases}
\]

is well defined. Note that both \(D^* \setminus \{m\} \) and \(E[m, b] \setminus \{m\} \) are open subsets of \(\tilde{D} \), since \(m \) separates \(a \) and \(b \) in \(X \) if \(m \neq a \). As a result we see that \(\tilde{f} \) is continuous on \(\tilde{D} \). Hence we obtain \((D^*, f^*) \prec (\tilde{D}, \tilde{f}) \). This contradicts the maximality of \((D^*, f^*)\). Therefore, we have \(D^* = X \) and this completes the proof. \(\square \)

Theorem 3.4. Let \(X \) be a first-countable compact Hausdorff space. Then the following conditions are equivalent.

(i) \(X \) is an AC-space.

(ii) \(C(X) \) is algebraically closed.
(iii) $C(X)$ is square-root closed.
(iv) X is almost locally connected and hereditarily unicoherent.
(v) X is almost locally connected and for every connected component X_λ of X, X_λ is locally connected, $\dim X_\lambda \leq 1$ and $\hat{H}^1(X_\lambda, \mathbb{Z}) = 0$.

Proof. It is enough to show that (v) is equivalent to (iv). Suppose that (iv) is true. Let X_λ be an arbitrary connected component of X. Note that X_λ is almost locally connected and hereditarily unicoherent. Therefore, we see that X_λ is locally connected by [2, Proof of Lemma 2.5]. Recall that $C(X_\lambda)$ is square-root closed by Theorem A. Therefore, we have $\dim X_\lambda \leq 1$ and $\hat{H}^1(X_\lambda, \mathbb{Z}) = 0$ by Theorem B. This implies that (iv) \Rightarrow (v).

Conversely, suppose that (v) holds. Then each connected component of X is hereditarily unicoherent, by Lemma 3.1. Thus X is also hereditarily unicoherent. Therefore we have that (v) implies (iv). This completes the proof. □

Example 3.1. $C(X)$ being algebraically closed need not imply $\hat{H}^1(X, \mathbb{Z}) = 0$ unless X is locally connected. In fact, let X be the Stone-Čech compactification of the space $\mathbb{N} \times [0,1]$ with its usual topology. Then $\dim X \leq 1$ and $\hat{H}^1(X, \mathbb{Z}) \neq 0$ (cf. [6, p. 1188, (i)]). By a simple calculation, we see that $C(X)$ is algebraically closed.

Note that X is hereditarily unicoherent by Theorem A. Therefore, this example also shows that the converse need not be true in Lemma 3.1.

Example 3.2. Lemma 3.2 need not be true, unless X is locally connected. In fact, let X be the closure of $\bigcup_{n \in \mathbb{N}} \{1/n\} \times [0,1]$ with its usual topology. Since each connected component is hereditarily unicoherent, so is X. On the other hand, we see that no point of $\{0\} \times [0,1]$ is of finite order. Hence X is not an A-space.

Example 3.3. In Theorem 3.4, the condition (ii) need not imply (v) unless X is first-countable. In fact, let X be the Stone-Čech compactification of \mathbb{R}. Then by a simple calculation, we see that $C(X)$ is algebraically closed (cf. [4, Corollary]). By [9, Theorem 5.14] we have $\dim X = 1$. On the other hand, X is connected but is not locally connected (cf. [10, p. 221, Theorem]). Also $\hat{H}^1(X, \mathbb{Z}) \neq 0$ since the function e^{ix} ($x \in \mathbb{R}$) is extended to X.

Example 3.4. As stated above, $C(X)$ is algebraically closed, if and only if $C(X)$ is square-root closed for a compact Hausdorff space X that is first-countable or locally connected. On the other hand, by the example in [2, Remark (3)], we see that it is not the case if X is neither first-countable nor locally connected.

ACKNOWLEDGMENT

The authors are extremely grateful to the referee for pointing out a flaw in an earlier proof of Theorem 3.4.

REFERENCES

Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: miura@yz.yamagata-u.ac.jp

Gumma Prefectural Ōta Technical High School, 380 Motegi-chou, Ōta 373-0809, Japan