Howe duality and the quantum general linear group

Author:
R. B. Zhang

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2681-2692

MSC (2000):
Primary 17B37, 20G42, 17B10

DOI:
https://doi.org/10.1090/S0002-9939-02-06892-2

Published electronically:
December 30, 2002

MathSciNet review:
1974323

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Howe duality is established for a pair of quantized enveloping algebras of general linear algebras. It is also shown that this quantum Howe duality implies Jimbo's duality between and the Hecke algebra.

**[APW]**Andersen, H. H.; Polo, P.; Wen, K. X.,*Representations of quantum algebras*. Invent. Math.**104**(1991) 1-59. MR**92e:17011****[CP]**Chari, V.; Pressley, A.,*A guide to quantum groups*. Cambridge University Press, Cambridge, 1994. MR**95j:17010****[GZ]**Gover, A. R.; Zhang, R. B.,*Geometry of quantum homogeneous vector bundles and representation theory of quantum groups. I*. Rev. Math. Phys.**11**(1999) 533-552. MR**2000j:81108****[Ho]**Howe, R.,*Perspectives on invariant theory*. The Schur Lectures (1992). Eds. I. Piatetski-Shapiro and S. Gelbart, Bar-Ilan University, 1995. MR**96e:13006****[Ji]**Jimbo, M.,*Quantum**matrix related to the generalized Toda system: an algebraic approach*. In Field theory, quantum gravity and strings (Meudon/Paris, 1984/1985), 335-361, Lecture Notes in Phys.,**246**, Springer, Berlin (1986). MR**87j:17013****[Ko]**Kostant, B.,*On Macdonald's**-function formula, the Laplacian and generalized exponents*, Adv. Math.**20**(1976) 257-285. MR**58:5484****[KR]**Kirillov, A. N., Reshetikhin, N.,*-Weyl group and a multiplicative formula for universal**-matrices*. Comm. Math. Phys.**134**(1990) 421-431. MR**92c:17023****[Ma]**Mathas, A.,*Iwahori-Hecke algebras and Schur algebras of the symmetric group*. Providence, R.I. : American Mathematical Society (1999). MR**2001g:20006****[Mon]**Montgomery, S.,*Hopf algebras and their actions on rings*. CBMS Regional Conference Series in Math.,**82**. American Mathematical Society, Providence, RI, 1993. MR**94i:16019****[PW]**Parshall, B.; Wang, J. P.,*Quantum linear groups*. Mem. Amer. Math. Soc.**89**(1991), no. 439. MR**91g:16028****[FRT]**Reshetikhin, N. Yu.; Takhtadzhyan, L. A.; Faddeev, L. D.,*Quantization of Lie groups and Lie algebras*. Algebra i Analiz**1**(1989) 178-206. (Russian) MR**90j:17039****[Ta]**Takeuchi, M.,*Some topics on*. J. Algebra**147**(1992) 379-410. MR**93b:17055**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
17B37,
20G42,
17B10

Retrieve articles in all journals with MSC (2000): 17B37, 20G42, 17B10

Additional Information

**R. B. Zhang**

Affiliation:
School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia

Email:
rzhang@maths.usyd.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-02-06892-2

Received by editor(s):
June 24, 2001

Received by editor(s) in revised form:
April 7, 2002

Published electronically:
December 30, 2002

Communicated by:
Dan M. Barbasch

Article copyright:
© Copyright 2002
American Mathematical Society