A Beurling-type theorem for the Fock space

Authors:
Xiaoman Chen and Shengzhao Hou

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2791-2795

MSC (2000):
Primary 46J15, 46H25, 47A15

Published electronically:
January 8, 2003

MathSciNet review:
1974336

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a finite codimensional quasi-invariant subspace of the Fock space . Then there exists a polynomial such that . We show that generates if and only if for some .

**[ARS]**A. Aleman, S. Richter, and C. Sundberg,*Beurling’s theorem for the Bergman space*, Acta Math.**177**(1996), no. 2, 275–310. MR**1440934**, 10.1007/BF02392623**[BD]**W. E. Boyce and R. C. DiPrima,*Elementary Differential Equations and Boundary Value Problems*, Wiley 7th edition 2001.**[Beu]**Arne Beurling,*On two problems concerning linear transformations in Hilbert space*, Acta Math.**81**(1948), 17. MR**0027954****[Con]**J. Conway,*Functions of one complex variable*, Springer-Verlag,**GTM**11 (1978).**[CGH]**X. Chen, G. Guo and S. Hou,*Analytic Hilbert spaces over the Complex plane*, to appear in JMAA.**[DG]**I. Daubechies and A. Grossmann,*Frames in the Bargman space of entire functions*, Comm. Pure Appl. Math.,**41**(1988) 661-680.**[Guo1]**Kunyu Guo,*Characteristic spaces and rigidity for analytic Hilbert modules*, J. Funct. Anal.**163**(1999), no. 1, 133–151. MR**1682835**, 10.1006/jfan.1998.3380**[Guo2]**Kunyu Guo,*Algebraic reduction for Hardy submodules over polydisk algebras*, J. Operator Theory**41**(1999), no. 1, 127–138. MR**1675180****[Guo3]**Kunyu Guo,*Equivalence of Hardy submodules generated by polynomials*, J. Funct. Anal.**178**(2000), no. 2, 343–371. MR**1802898**, 10.1006/jfan.2000.3659**[Guo4]**K. Guo,*The codimension formula on AF-cosubmodules*, to appear in Chin. Ann. of Math.**[GZh]**K. Guo and D. Zheng,*Invariant subspaces, quasi-invariant subspaces and Hankel operators*, J. Funct. Anal. 187(2001), 308-342.**[Hed]**Per Jan Håkan Hedenmalm,*An invariant subspace of the Bergman space having the codimension two property*, J. Reine Angew. Math.**443**(1993), 1–9. MR**1241125**, 10.1515/crll.1993.443.1**[HZ]**Håkan Hedenmalm and Ke He Zhu,*On the failure of optimal factorization for certain weighted Bergman spaces*, Complex Variables Theory Appl.**19**(1992), no. 3, 165–176. MR**1284108****[Ric]**Stefan Richter,*Invariant subspaces of the Dirichlet shift*, J. Reine Angew. Math.**386**(1988), 205–220. MR**936999**, 10.1515/crll.1988.386.205

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46J15,
46H25,
47A15

Retrieve articles in all journals with MSC (2000): 46J15, 46H25, 47A15

Additional Information

**Xiaoman Chen**

Affiliation:
Institute of Mathematics, Fudan University, Shanghai, 200433, People’s Republic of China

Email:
xchen@fudan.edu.cn

**Shengzhao Hou**

Affiliation:
Department of Mathematics, Shanxi Teachers University, Linfen, 041004, People’s Republic of China

Address at time of publication:
Institute of Mathematics, Zhejiang University, Hangzhou, 310027, People’s Republic of China

Email:
szhou@etang.com

DOI:
https://doi.org/10.1090/S0002-9939-03-06803-5

Received by editor(s):
November 6, 2001

Received by editor(s) in revised form:
April 2, 2002

Published electronically:
January 8, 2003

Additional Notes:
This work was supported by NSFC, Lab Math. for Nonlinear Sciences at Fudan Univ., Fund of Shanxi Province for young people

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2003
American Mathematical Society