CANCELLATION OF DIRECT SUMS OF COUNTABLE ABELIAN p-GROUPS

RÜDIGER GÖBEL AND WARREN MAY

(Communicated by Stephen D. Smith)

Abstract. Let $B \oplus A_1 = C \oplus A_2$ be abelian groups where $B \cong C$ is a direct sum of countable p-groups. A condition is given on the Ulm-Kaplansky p-invariants of B, A_1 and A_2 such that $A_1 \cong A_2$.

Let p denote a fixed prime number. In [3], the following result is shown for two isomorphic modular abelian group algebras: if one group is a \aleph_1-separable abelian p-group of cardinality \aleph_1, then the two groups are isomorphic under the assumption of MA and \neg CH. A question which arises in the proof is a variation of the “substitution property” in Problem 58 in [2], namely, can a direct sum of cyclic p-groups be cancelled from isomorphic direct sums if the Ulm-Kaplansky invariants of the direct sum of cyclics are “disjoint” from those of the complementary groups. In [1], Crawley proved a cancellation theorem for totally projective groups with all Ulm-Kaplansky invariants finite. Such groups are of necessity countable. We shall prove a cancellation theorem which has both Crawley’s theorem and a positive answer to the question above as corollaries. Specifically, we prove the

Theorem. Let $G = B \oplus A_1 = C \oplus A_2$, where $B \cong C$ is a direct sum of countable abelian p-primary groups, and A_1 and A_2 are arbitrary abelian groups. For every Ulm-Kaplansky p-invariant of B, assume that it is either finite or else the corresponding Ulm-Kaplansky invariants of A_1 and A_2 are zero. Then there exists a subgroup D of G such that $G = D \oplus A_1 = D \oplus A_2$. In particular, A_1 and A_2 are isomorphic.

Conjecture. The Theorem is true if B is allowed to be a totally projective p-primary group.

In fact, we know of no counterexample if B is allowed to be an arbitrary p-group.

All Ulm invariants will be understood to be Ulm-Kaplansky invariants for the prime p. We recall the definition. For an ordinal α, the p-socle elements of p-height $\geq \alpha$ form a vector space over the integers modulo p. The dimension of the quotient space modulo the subspace of elements of p-height $> \alpha$ is the Ulm invariant at α. The Ulm invariant at ∞ is the dimension of the p-socle of the maximal divisible p-subgroup. It will be useful to be able to assume that B is a reduced p-group, so we prove a brief lemma to that effect.

Lemma 1. To prove the Theorem, we may assume that B is reduced.
Proof. Assume the hypothesis of the Theorem and first suppose that the Theorem is true if B is reduced or divisible. For arbitrary B, we may choose a reduced complement B' (respectively, C') for the maximal divisible subgroup of B (respectively, C). Then the Theorem can be applied to B' to obtain D' such that $G = D' \oplus B' \oplus A_1 = D' \oplus C' \oplus A_2$. Passing to G/D', applying the reduced case of the Theorem, and taking inverse image, one obtains $D \supseteq D'$ such that $G = D \oplus A_1 = D \oplus A_2$. Thus the lemma will be shown if we prove the Theorem for the case that B is divisible.

Assume now that B is divisible. If the Ulm invariant of B at ∞ is finite, then A_1 and A_2 are reduced, hence $B = C$ and we may take $D = B$. If the Ulm invariant of B is finite, then by induction and grouping appropriate summands of B and C with A_1 and A_2, we may assume that $B \cong \mathbb{Z}(p^{\infty})$. Let b and c be generators for the socles of B and C, respectively. Then $b = c' + a_2$ for some $c' \in C, a_2 \in A_2$. If c' has order p, then $G = B \oplus A_2$, thus we may take $D = B$. Therefore we may assume that $b = a_2$ and, by symmetry, $c = a_1$ for some $a_1 \in A_1$. We may choose $D \cong \mathbb{Z}(p^{\infty})$ with socle generated by $b + a_1$. Since $b + a_1 = c + a_2$, we have $G = D \oplus A_1 = D \oplus A_2$, as desired.

The proof will need several lemmas, first treating the bounded case and then the countable case. In Lemma 4 we shall use Crawley’s idea of induction on the Ulm length, which will be feasible since we may assume that B is reduced. We say that two groups have disjoint Ulm invariants if corresponding Ulm invariants are never both nonzero.

Lemma 2. Let $G = B \oplus B' \oplus A_1 = C \oplus C' \oplus A_2, C \subseteq B \oplus A_1$, and let $\pi : G \rightarrow C$ be the projection with kernel $C' \oplus A_2$. Assume that C is a p-group and that C and A_1 have disjoint Ulm invariants. Then $C/\pi(B)$ is divisible. In particular, if C is bounded, then $C = \pi(B)$ and we can conclude that $G = B + (C' \oplus A_2)$.

Proof. It will suffice to show that $C \subseteq \pi(B) + pC$. Let $c \in C$ and write $c = b + a$ ($b \in B, a \in A_1$). Denote the p-height of an element $g \in G$ by $\|g\|$. We first claim that if c has order p, then $\|c\| < \|a\|$. We may assume that $a \neq 0$, thus a has order p and $|c| \leq |a|$. If $|c| = |a|$, this would contradict the assumption on Ulm invariants, thus the claim is shown. Let the order of c be $p^k, k \geq 1$. We will show by induction on k that $c \in \pi(B) + pC$. We have $c = \pi(b) + \pi(a)$, so we must show that $\pi(a) \in \pi(B) + pC$. If $k = 1$, then by our claim, $|a| \geq 1$, hence $\pi(a) \in pC$. Now assume $k > 1$. The order of a is $\leq p^k$, so by induction we may assume it is p^k. Consider $p^{k-1}c = p^{k-1}b + p^{k-1}a$. Applying the claim again, $k - 1 \leq \|p^{k-1}c\| < \|p^{k-1}a\|$, thus $k \leq \|p^{k-1}a\|$. But then $a = a' + a'' (a', a'' \in A_1)$, such that a' has order p^{k-1} and $|a''| \geq 1$. Thus $\pi(a) \in \pi(B) + pC$ and the induction is complete.

Let us say that the Ulm invariant conditions apply to B, A_1 and A_2 if each Ulm invariant of B is either finite or else the corresponding Ulm invariants of A_1 and A_2 are zero. The next lemma allows us to replace two isomorphic bounded direct summands by a common summand.

Lemma 3. Let $G = B_1 \oplus B_2 \oplus B' \oplus A_1 = C_1 \oplus C_2 \oplus C' \oplus A_2$ such that $B_i \cong C_i$ ($i = 1, 2$), $B_1 \oplus B_2 \subseteq C_1 \oplus C_2 \oplus A_2$, and $C_1 \oplus C_2 \subseteq B_1 \oplus B_2 \oplus A_1$. Assume that B_1 is a bounded p-group, that we are given an element u of the socle of B_1, that the Ulm
invariants of B_1 and B_2 are disjoint, and that the Ulm invariant conditions hold for B_1, A_1 and A_2. Then there exists D such that:

(i) $G = D \oplus B_2 \oplus B' \oplus A_1 = D \oplus C_2 \oplus C' \oplus A_2$;
(ii) $B_1 \oplus B_2 \oplus A_1 = D \oplus B_2 \oplus A_1$ and $C_1 \oplus C_2 \oplus A_2 = D \oplus C_2 \oplus A_2$; and
(iii) $u \in D \oplus A_1$.

Proof. Note that (ii) will follow from (i) and the hypothesis of the lemma if we have $D \subseteq (B_1 \oplus B_2 \oplus A_1) \cap (C_1 \oplus C_2 \oplus A_2)$.

We shall induct on the sum of the finite Ulm invariants of B_1 plus the number of infinite Ulm invariants. We shall consider decompositions $B_1 = B'_1 \oplus B''_1$ and $C_1 = C'_1 \oplus C''_1$ such that $B'_1 \cong C'_1$ and $B''_1 \cong C''_1$. We shall obtain D as $D' \oplus D''$.

First suppose that B_1 has an infinite Ulm invariant. Then we may take B'_1 and B''_1 such that B'_1 is nontrivial and has Ulm invariants disjoint from those of B''_1 (thus C''_1), A_1 and A_2. Write $u = u' + u''$ ($u' \in B'_1, u'' \in B''_1$). Grouping B''_1 and B_2 with A_1 and C''_1 and C_2 with A_2, we may apply Lemma 2 with $B = B'_1$ and $C = C'_1$ since $C'_1 \subseteq B'_1 \oplus B_2 \oplus A_1 = B'_1 \oplus (B'_1 \oplus B_2 \oplus A_1)$. Thus, $G = B'_1 \oplus (C''_1 \oplus C_2 \oplus C' \oplus A_2)$. If $g \in B'_1 \cap (C''_1 \oplus C_2 \oplus C' \oplus A_2)$, then $g \in C''_1 \oplus C_2 \oplus A_2$ since $B'_1 \subseteq C_1 \oplus C_2 \oplus A_2$. If $g \neq 0$, then there is an element of order p in $B'_1 \cap (C''_1 \oplus C_2 \oplus A_2)$. The p-height of such an element must occur at an ordinal for which the Ulm invariants of both B'_1 and $C''_1 \oplus C_2 \oplus A_2$ are nonzero. This contradicts the choice of B'_1 and the assumption on Ulm invariants, thus the sum for G is a direct sum. Therefore, we can take $D' = B'_1$, replacing both B'_1 and C'_1. Note that $u' \in D'$. Now group D' with A_1 and A_2 and apply induction to B''_1, replacing both B'_1 and C''_1 by D'', with $u'' \in D'' + (D'_1 + A_1)$. Put $D = D' \oplus D''$.

If B_1 has no infinite Ulm invariant, then it is a finite group, so we may take $B'_1 = \langle b \rangle$ such that $u \in B'_1$. Let $C'_1 = \langle c \rangle$. Then we have $b = mc + c'' + c_2 + a_2 (m \in \mathbb{Z}, c'' \in C''_1, c_2 \in C_2, a_2 \in A_2)$. If $p \nmid m$, we can take $D' = B'_1$. Therefore, assume that $p \mid m$. Further, $c = nb + b'' + b_2 + a_1 (n \in \mathbb{Z}, b'' \in B''_1, b_2 \in B_2, a_1 \in A_1)$ and $b_2 = kc + c'' + c_2 + a_2 (k \in \mathbb{Z}, c'' \in C''_1, c_2 \in C_2, a_2 \in A_2)$. By the first equation, the order of b_2 cannot exceed the order of c. In the second, if $p \nmid k$, then b_2 generates a cyclic summand of B_2 of the same order as c, contradicting the Ulm invariants of B_1 and B_2 being disjoint. Thus $p \mid k$. Put $D' = \langle b + b'' + a_1 \rangle$. Clearly, $G = D' \oplus B''_1 \oplus B_2 \oplus B' \oplus A_1$. If we can show that $G = D' \oplus (C''_1 \oplus C_2 \oplus C' \oplus A_2)$, then the sum will be direct since D' and C''_1 have the same order, which is the index of $C''_1 \oplus C_2 \oplus C' \oplus A_2$ in G. It suffices to show that c lies in this sum. Reading the above equations modulo $C''_1 \oplus C_2 \oplus C' \oplus A_2$, we have $b = mc, c = nb + b'' + b_2 + a_1$, and $b_2 = kc$, hence $c = (b + b'' + a_1) + (m - 1)mc$. Since p divides both m and k, c lies in the sum above. Now group D' with A_1 and A_2 and apply induction to B''_1 and a generator of the socle of $\langle b'' \rangle$. Thus we get D'' which replaces B''_1 and C''_1. Taking $D = D' \oplus D''$, and noting that $u \in D \oplus A_1$, the induction is finished.

Before considering countable B, we prove a simple extension lemma. For α an ordinal, we let G^α denote the α-th Ulm subgroup of G.

Lemma 4. Let $G = V \oplus H$ and $G^\alpha = Z \oplus H^\alpha$. Assume that V is a p-group such that V/V^α is totally projective. Then there exists X such that $G = X \oplus H$ and $X^\alpha = Z$.

Proof. We have $G^\alpha = V^\alpha \oplus H^\alpha = Z \oplus H^\alpha$. Let π be the projection $Z \oplus H^\alpha \to H^\alpha$ with kernel Z. The homomorphism $\phi : V^\alpha \oplus H \to H$ given by $\phi(v, h) = \pi(v) + h$
does not decrease \(p \)-heights relative to \(V \oplus H = G \). Since \(V^\alpha \) is a nice subgroup of \(V \) with totally projective quotient, [2, Corollary 81.4] implies that \(\phi \) extends to a homomorphism \(\overline{\phi} : V \oplus H \to H \). Let \(X \) be the kernel of \(\overline{\phi} \). Clearly, \(G = X \oplus H \). If \(z \in Z \), then \(z = v + h \) \((v \in V^\alpha, h \in H^\alpha)\]. Thus, \(\overline{\phi}(z) = \pi(v) + h = \pi(v) + \pi(h) = \pi(z) = 0 \), and we have \(Z \subseteq X \). This implies that \(Z \subseteq X^\alpha \), and \(G^\alpha = X^\alpha \oplus H^\alpha = Z \oplus H^\alpha \) shows that \(Z = X^\alpha \).

\(\square \)

Lemma 5. Assume that \(G = B \oplus B' \oplus A_1 = C \oplus C' \oplus A_2, B \subseteq C \oplus A_2, C \subseteq B \oplus A_1 \), and that \(B \cong C \) is a countable \(p \)-group. Assume the Ulm invariant conditions for \(B, A_1 \), and \(A_2 \). Then there exists \(D \) such that \(G = D \oplus B' \oplus A_1 = D \oplus C' \oplus A_2, B \oplus A_1 = D \oplus A_1, \) and \(C \oplus A_2 = D \oplus A_2 \).

Proof. We induct on the Ulm length \(\lambda \) of \(B \). For \(\lambda = 0 \), we have \(B = 0 \) and take \(D = 0 \). Therefore assume \(\lambda > 0 \). As we noted in the proof of Lemma 3, we only need to show that \(G = D \oplus B' \oplus A_1 = D \oplus C' \oplus A_2 \) and \(D \subseteq (C \oplus A_2) \cap (B \oplus A_1) \). We will obtain \(D \) by a second induction. We shall construct \(B_n, C_n \) and \(D_n \) for \(n < \omega \) such that:

(a) \(G = D_n \oplus B_n \oplus B' \oplus A_1 = D_n \oplus C_n \oplus C' \oplus A_2; \)

(b) \(B_n \) and \(C_n \) are direct summands of \(B \) and \(C \), respectively, \(B_n \cong C_n \), and \(D_n \subseteq D_{n+1}; \)

(c) \(B_n \subseteq D_n \oplus C_n \oplus A_2, C_n \subseteq D_n \oplus B_n \oplus A_1 \), and \(D_n \subseteq (B \oplus A_1) \cap (C \oplus A_2); \)

(d) \(B_n \) and \(D_n \) have disjoint Ulm invariants; and

(e) putting \(D = \bigcup_{n<\omega} D_n \), we have \(B[p] \subseteq D \oplus B' \oplus A_1 \) and \(C[p] \subseteq D \oplus C' \oplus A_2 \).

Each \(D_n \oplus B' \oplus A_1 \) is a direct summand of \(G \), hence pure in \(G \). Thus \(D \oplus B' \oplus A_1 = \bigcup_{n<\omega} (D_n \oplus B' \oplus A_1) \) is a pure subgroup of \(G \) containing the socles of \(B, B' \) and \(A_1 \), hence will equal \(G \). Similarly, \(G = D \oplus C' \oplus A_2 \). Moreover, condition (c) gives \(D \subseteq (B \oplus A_1) \cap (C \oplus A_2) \), thus we will be done if we carry out the construction.

We start with \(D_0 = 0, B_0 = B \) and \(C_0 = C \). Enumerate the elements of the socles of \(B \) and \(C \) and alternate the construction so that each element of \(B[p] \) or \(C[p] \) lies in some \(D_n \oplus B' \oplus A_1 \) or \(D_n \oplus C' \oplus A_2 \), respectively. This will take care of condition (e). By symmetry, we may assume that \(s \in B[p] \), that (a)-(d) hold (except for \(D_n \subseteq D_{n+1} \)), and we shall construct appropriate \(B_{n+1}, C_{n+1} \), and \(D_{n+1} \) such that \(s \in D_{n+1} \oplus B' \oplus A_1 \).

Let \(u \) be the coordinate of \(s \) in \(B_n \) in the decomposition (a). We shall achieve \(s \in D_{n+1} \oplus B' \oplus A_1 \) if \(u \in D_{n+1} \oplus B' \oplus A_1 \). If \(u = 0 \), we can take \(D_{n+1} = D_n, B_{n+1} = B_n \) and \(C_{n+1} = C_n \), so assume that \(u \neq 0 \). Thus there is an ordinal \(\alpha < \lambda \) such that \(u \in B^\alpha_n \setminus B^{\alpha+1}_n \). We may decompose \(B^\alpha_n = U \oplus U' \), where \(u \in U, p'U = 0 \), and \(U' \) has no cyclic summand of order \(< p' \). We claim that there is a decomposition \(B_n = V \oplus B_{n+1} \) such that \(V^\alpha = U, B^\alpha_{n+1} = U' \), and for which \(V \) and \(B_{n+1} \) have disjoint Ulm invariants. First we use [2, Corollary 76.2] to produce countable groups \(\overline{V} \) and \(\overline{B}_{n+1} \) by specifying Ulm factors. By (b), \(B_n \) is countable, thus for \(\sigma < \alpha \) we may decompose the Ulm factor \((B_n)_\sigma = \overline{V}_\sigma \oplus (\overline{B}_{n+1})_\sigma \) so that each summand is an unbounded countable direct sum of cyclic groups and the Ulm invariants are disjoint. For \(\sigma \geq \alpha \), we take \(\overline{V}_\sigma \) and \((\overline{B}_{n+1})_\sigma\) to be the appropriate Ulm factors of \(U \) and \(U' \), respectively. Thus we obtain countable groups \(\overline{V} \) and \(\overline{B}_{n+1} \) with the specified Ulm factors, hence with disjoint Ulm invariants. Moreover, [2, Corollary 77.3] implies that \(\overline{V}^\alpha \cong U, \overline{B}^\alpha_{n+1} \cong U' \), and \(B_n \cong \overline{V} \oplus \overline{B}_{n+1} \) since we are dealing with countable groups with the same Ulm factors. Thus, we may assume that \(\overline{V}^\alpha = U \) and \(\overline{B}^\alpha_{n+1} = U' \). By [2, Corollary 77.4], there is an isomorphism
Passing to the quotient X/Z, we take $B_i^n = B_{i+1}^n + A_i$, for and for $β < α$ that $B_β ⊆ D_α + A_1$ and $C_β ⊆ D_α + A_2$. We have $B_α ⊆ \bigoplus_{i < α} C_i + A_2$ and $C_α ⊆ \bigoplus_{i < α} B_i + A_1$, thus $B_α ⊆ D_α + C_α + A_2$ and $C_α ⊆ D_α + B_α + A_1$. Passing to the quotient $G/D_α$, Lemma \ref{lem:Ulmsubgroups} applies to yield $D_{α+1} ⊆ D_α$ such that $G = D_{α+1} + \bigoplus_{i < α} B_i + A_1 = D_{α+1} + \bigoplus_{i < α} C_i + A_2, B_α ⊆ D_{α+1} + A_1$, and $C_α ⊆ D_{α+1} + A_2$. The Theorem is proved.
References

Fachbereich 6, Mathematik und Informatik, Universität Essen, Universitätsstr. 3, 45117 Essen, Germany
E-mail address: R.Goebel@Uni-Essen.De

Department of Mathematics, University of Arizona, Tucson, Arizona 85721
E-mail address: may@math.arizona.edu