Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$K$-theory of $\mathrm{SG}$-pseudo-differential algebras


Author: Fabio Nicola
Journal: Proc. Amer. Math. Soc. 131 (2003), 2841-2848
MSC (2000): Primary 46L80; Secondary 58J40, 19K56
Published electronically: January 8, 2003
MathSciNet review: 1974341
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We are concerned with the so-called ${\rm SG}$-pseudo-differential calculus. We describe the spectrum of the unital and commutative $C^\ast$-algebra given by the norm closure of the space of $0$-order pseudo-differential operators modulo compact operators; other related algebras are also considered. Finally, their $K$-theory is computed.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, 𝐾-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0224083
  • 2. Bruce Blackadar, 𝐾-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
  • 3. Cordes H.O., A global parametrix for pseudo-differential operators over $\mathbb{R}^n$, with applications, Reprint, SFB 72, Universität Bonn, 1976.
  • 4. H. O. Cordes, The technique of pseudodifferential operators, London Mathematical Society Lecture Note Series, vol. 202, Cambridge University Press, Cambridge, 1995. MR 1314815
  • 5. Sandro Coriasco, Fourier integral operators in SG classes. II. Application to SG hyperbolic Cauchy problems, Ann. Univ. Ferrara Sez. VII (N.S.) 44 (1998), 81–122 (1999) (English, with English and Italian summaries). MR 1744134
  • 6. Feygin V.I., Two algebras of pseudodifferential operators in $\mathbb{R}^n$ and some applications, Trudy Moskov. Mat. Obshch., 36 (1977), 155-194.
  • 7. Grushin V.V., Pseudodifferential operators in $\mathbb{R}^n$ with bounded symbols, Funkc. Anal., 3 (1970), 37-50.
  • 8. Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
    Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1994. Pseudo-differential operators; Corrected reprint of the 1985 original. MR 1313500
  • 9. Robert Lauter, Bertrand Monthubert, and Victor Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math. 5 (2000), 625–655 (electronic). MR 1800315
  • 10. Robert Lauter and Sergiu Moroianu, Fredholm theory for degenerate pseudodifferential operators on manifolds with fibered boundaries, Comm. Partial Differential Equations 26 (2001), no. 1-2, 233–283. MR 1842432, 10.1081/PDE-100001754
  • 11. Melo S.T., Nest R., Schrohe E., $C^\ast$-structure and K-Theory of Boutet de Monvel's algebra, preprint November 2001, Potsdam.
  • 12. Richard B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) Lecture Notes in Pure and Appl. Math., vol. 161, Dekker, New York, 1994, pp. 85–130. MR 1291640
  • 13. Richard B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995. MR 1350074
  • 14. Richard Melrose and Maciej Zworski, Scattering metrics and geodesic flow at infinity, Invent. Math. 124 (1996), no. 1-3, 389–436. MR 1369423, 10.1007/s002220050058
  • 15. R. Melrose and V. Nistor, 𝐾-theory of 𝐶*-algebras of 𝑏-pseudodifferential operators, Geom. Funct. Anal. 8 (1998), no. 1, 88–122. MR 1601850, 10.1007/s000390050049
  • 16. Cesare Parenti, Operatori pseudo-differenziali in 𝑅ⁿ e applicazioni, Ann. Mat. Pura Appl. (4) 93 (1972), 359–389. MR 0437917
  • 17. Elmar Schrohe, Spaces of weighted symbols and weighted Sobolev spaces on manifolds, Pseudodifferential operators (Oberwolfach, 1986) Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 360–377. MR 897787, 10.1007/BFb0077751
  • 18. Bert-Wolfgang Schulze, Boundary value problems and singular pseudo-differential operators, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1998. MR 1631763
  • 19. Shubin M.A., Pseudodifferential operators in $\mathbb{R}^n$, Dokl. Akad. Nauk SSSR, 196 (1971), 316-319.
  • 20. M. A. Shubin, Pseudodifferential operators and spectral theory, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by Stig I. Andersson. MR 883081
  • 21. N. E. Wegge-Olsen, 𝐾-theory and 𝐶*-algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. A friendly approach. MR 1222415

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L80, 58J40, 19K56

Retrieve articles in all journals with MSC (2000): 46L80, 58J40, 19K56


Additional Information

Fabio Nicola
Affiliation: Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino, Italy
Email: nicola@dm.unito.it

DOI: http://dx.doi.org/10.1090/S0002-9939-03-06837-0
Keywords: $K$-theory, $C^\ast$-algebras, pseudo-differential operators
Received by editor(s): January 23, 2002
Received by editor(s) in revised form: April 7, 2002
Published electronically: January 8, 2003
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2003 American Mathematical Society