Degree bounds in quantum Schubert calculus

Author:
Alexander Yong

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2649-2655

MSC (1991):
Primary 14M15; Secondary 05E05, 14N10

DOI:
https://doi.org/10.1090/S0002-9939-03-06850-3

Published electronically:
January 8, 2003

MathSciNet review:
1974319

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fulton and Woodward have recently identified the smallest degree of that appears in the expansion of the product of two Schubert classes in the (small) quantum cohomology ring of a Grassmannian. We present a combinatorial proof of this result, and provide an alternative characterization of this smallest degree in terms of the rim hook formula for the quantum product.

**1.**A. Bertram,*Quantum Schubert Calculus*, Adv. Math.**128**(1997) 289-305. MR**98j:14067****2.**A. Bertram, I. Ciocan-Fontanine and W. Fulton,*Quantum Multiplication of Schur polynomials*, Journal of Algebra**219**(1999) 728-746. MR**2000k:14042****3.**A. Buch,*Quantum cohomology of Grassmannians*, e-print`math.AG/0106268`.**4.**A. Buch,*Littlewood-Richardson Calculator*, software available at`http://www-math.``mit.edu/~abuch`.**5.**W. Fulton,*Eigenvalues, invariant factors, highest weights, and Schubert calculus*, Bull. Amer. Math. Soc. (N.S.)**37**(2000), no. 3, 209-249. MR**2001g:15023****6.**W. Fulton,*Young tableaux*, Cambridge University Press, 1997. MR**99f:05119****7.**W. Fulton and R. Pandharipande,*Notes on stable maps and quantum cohomology*, Algebraic geometry--Santa Cruz 1995, Amer. Math. Soc., Providence, RI, 1997, 45-96. MR**98m:14025****8.**W. Fulton and C. Woodward, preprint, 2001.**9.**G. James and A. Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Co. Reading, Mass., 1981.**10.**M. Kontsevich and Y. Manin,*Gromov-Witten classes, quantum cohomology, and enumerative geometry*, Mirror Symmetry II, Amer. Math. Soc., Providence, RI, 1997, 607-653.**11.**I. Macdonald,*Symmetric functions and Hall polynomials, Second edition,*Oxford University Press, 1995. MR**96h:05207****12.**A. Postnikov,*Affine approach to quantum Schubert calculus*, e-print math. CO/0205165.**13.**Y. Ruan and G. Tian,*A mathematical theory of quantum cohomology,*Math. Res. Lett.**1**(1994) 269-278.**14.**F. Sottile,*Rational Curves on Grassmannians: systems theory, reality, and transverality*, to appear in Contemporary Mathematics, 2001.**15.**R. Stanley,*Enumerative Combinatorics, Volume 2*, Cambridge University Press, 1999. MR**2000k:05026**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
14M15,
05E05,
14N10

Retrieve articles in all journals with MSC (1991): 14M15, 05E05, 14N10

Additional Information

**Alexander Yong**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
ayong@umich.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-06850-3

Keywords:
Gromov-Witten invariants,
quantum cohomology,
Grassmannian,
Schubert calculus

Received by editor(s):
December 14, 2001

Received by editor(s) in revised form:
April 2, 2002

Published electronically:
January 8, 2003

Communicated by:
John R. Stembridge

Article copyright:
© Copyright 2003
American Mathematical Society