Degree bounds in quantum Schubert calculus

Author:
Alexander Yong

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2649-2655

MSC (1991):
Primary 14M15; Secondary 05E05, 14N10

Published electronically:
January 8, 2003

MathSciNet review:
1974319

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Fulton and Woodward have recently identified the smallest degree of that appears in the expansion of the product of two Schubert classes in the (small) quantum cohomology ring of a Grassmannian. We present a combinatorial proof of this result, and provide an alternative characterization of this smallest degree in terms of the rim hook formula for the quantum product.

**1.**Aaron Bertram,*Quantum Schubert calculus*, Adv. Math.**128**(1997), no. 2, 289–305. MR**1454400**, 10.1006/aima.1997.1627**2.**Aaron Bertram, Ionuţ Ciocan-Fontanine, and William Fulton,*Quantum multiplication of Schur polynomials*, J. Algebra**219**(1999), no. 2, 728–746. MR**1706853**, 10.1006/jabr.1999.7960**3.**A. Buch,*Quantum cohomology of Grassmannians*, e-print`math.AG/0106268`.**4.**A. Buch,*Littlewood-Richardson Calculator*, software available at`http://www-math.``mit.edu/~abuch`.**5.**William Fulton,*Eigenvalues, invariant factors, highest weights, and Schubert calculus*, Bull. Amer. Math. Soc. (N.S.)**37**(2000), no. 3, 209–249 (electronic). MR**1754641**, 10.1090/S0273-0979-00-00865-X**6.**William Fulton,*Young tableaux*, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR**1464693****7.**W. Fulton and R. Pandharipande,*Notes on stable maps and quantum cohomology*, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR**1492534**, 10.1090/pspum/062.2/1492534**8.**W. Fulton and C. Woodward, preprint, 2001.**9.**G. James and A. Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, 16. Addison-Wesley Co. Reading, Mass., 1981.**10.**M. Kontsevich and Y. Manin,*Gromov-Witten classes, quantum cohomology, and enumerative geometry*, Mirror Symmetry II, Amer. Math. Soc., Providence, RI, 1997, 607-653.**11.**I. G. Macdonald,*Symmetric functions and Hall polynomials*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR**1354144****12.**A. Postnikov,*Affine approach to quantum Schubert calculus*, e-print math. CO/0205165.**13.**Y. Ruan and G. Tian,*A mathematical theory of quantum cohomology,*Math. Res. Lett.**1**(1994) 269-278.**14.**F. Sottile,*Rational Curves on Grassmannians: systems theory, reality, and transverality*, to appear in Contemporary Mathematics, 2001.**15.**Richard P. Stanley,*Enumerative combinatorics. Vol. 2*, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR**1676282**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
14M15,
05E05,
14N10

Retrieve articles in all journals with MSC (1991): 14M15, 05E05, 14N10

Additional Information

**Alexander Yong**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Email:
ayong@umich.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-06850-3

Keywords:
Gromov-Witten invariants,
quantum cohomology,
Grassmannian,
Schubert calculus

Received by editor(s):
December 14, 2001

Received by editor(s) in revised form:
April 2, 2002

Published electronically:
January 8, 2003

Communicated by:
John R. Stembridge

Article copyright:
© Copyright 2003
American Mathematical Society