Subspaces of with more than one complex structure

Author:
Razvan Anisca

Journal:
Proc. Amer. Math. Soc. **131** (2003), 2819-2829

MSC (2000):
Primary 46B20

DOI:
https://doi.org/10.1090/S0002-9939-03-06858-8

Published electronically:
January 28, 2003

MathSciNet review:
1974339

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a method of constructing explicit Banach spaces not isomorphic to their complex conjugates as subspaces of a natural class of Banach spaces. In particular, it is shown that , for , contains real subspaces with at least two non-isomorphic complex structures.

**1.**J. Bourgain,*Real isomorphic complex Banach spaces need not be complex isomorphic*, Proc. Amer. Math. Soc.**96**(1986), 221-226. MR**87b:46012****2.**W. B. Johnson, J. Lindenstrauss and G. Schechtman,*On the relation between several notions of unconditional structure*, Israel J. Math.**37**(1980), 120-129. MR**83f:46015****3.**N. J. Kalton and N. T. Peck,*Twisted sums of sequence spaces and the three space problem*, Trans. Amer. Math. Soc.**255**(1979), 1-30. MR**82g:46021****4.**N. J. Kalton,*An elementary example of a Banach space not isomorphic to its complex conjugate*, Canad. Math. Bull.**38**(1995), 218-222. MR**96e:46018****5.**R. Komorowski and N. Tomczak-Jaegermann,*Banach spaces without local unconditional structure*, Israel J. Math.**89**(1995), 205-226. MR**96g:46007****6.**R. Komorowski and N. Tomczak-Jaegermann,*Eratum to: Banach spaces without local unconditional structure*, Israel J. Math.**105**(1998), 85-92. MR**99g:46008****7.**R. Komorowski and N. Tomczak-Jaegermann,*Subspaces of and without unconditional structure*, Studia Math.**149**(2002), 1-21.**8.**T. Ketonen,*On unconditionality in spaces*, Annales Academiae Sciendemiae Scientiarum Scientiarum Fennicae, Series A I, Mathematica Dissertationes**35**(1981). MR**82h:46020****9.**D. R. Lewis,*Finite dimensional subspaces of*, Studia Math.**63**(1978), 207-212.**10.**J. Lindenstrauss and L. Tzafriri,*Classical Banach spaces I, Sequence spaces*, Springer-Verlag, Berlin, 1977. MR**58:17766****11.**J. Lindenstrauss and L. Tzafriri,*Classical Banach spaces II, Function spaces*, Springer-Verlag, Berlin, 1979. MR**81c:46001****12.**S. Szarek,*A superreflexive Banach space which does not admit complex structure*, Proc. Amer. Math. Soc.**97**(1986), 437-444. MR**87f:46026****13.**S. Szarek,*On the existence and uniqueness of complex structure and spaces with ``few" operators*, Trans. Amer. Math. Soc.**293**(1986), 339-353. MR**87e:46029****14.**N. Tomczak-Jaegermann,*Banach-Mazur distances and finite-dimensional operator ideals*, Pitman Monographs 38, Longman Scientific Technical, Harlow, 1989. MR**90k:46039**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46B20

Retrieve articles in all journals with MSC (2000): 46B20

Additional Information

**Razvan Anisca**

Affiliation:
Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Email:
anisca@math.ualberta.ca

DOI:
https://doi.org/10.1090/S0002-9939-03-06858-8

Received by editor(s):
July 17, 2001

Received by editor(s) in revised form:
April 3, 2002

Published electronically:
January 28, 2003

Additional Notes:
This work was supported by an Izaak Walton Killam Memorial Scholarship at the University of Alberta

Communicated by:
David R. Larson

Article copyright:
© Copyright 2003
American Mathematical Society