Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Orthocomplete effect algebras


Authors: Gejza Jenca and Sylvia Pulmannová
Journal: Proc. Amer. Math. Soc. 131 (2003), 2663-2671
MSC (2000): Primary 06F05; Secondary 03G25, 81P10
DOI: https://doi.org/10.1090/S0002-9939-03-06990-9
Published electronically: April 1, 2003
MathSciNet review: 1974321
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for every orthocomplete effect algebra $E$ the center of $E$ forms a complete Boolean algebra. As a consequence, every orthocomplete atomic effect algebra is a direct product of irreducible ones.


References [Enhancements On Off] (What's this?)

  • 1. Bennett, M.K., Foulis, D.J., Phi-symmetric effect algebras, Found. Phys. 25 (1995), 1699-1722. MR 97a:81015
  • 2. Chang, C.C., Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 20:821
  • 3. Chevalier, G., Pulmannová, S., Some ideal lattices in partial abelian monoids and effect algebras, Order 17 (2000), 75-92. MR 2001g:06004
  • 4. Dvurecenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Academic Publ., Dordrecht and Ister Science Press, Bratislava, 2000. MR 2002h:81021
  • 5. Foulis, D., Bennett, M.K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352. MR 95k:06020
  • 6. Giuntini, R., Greuling, H., Toward a formal language for unsharp properties, Found. Phys. 19 (1989), 931-945. MR 90j:81017
  • 7. Grätzer, G., Universal algebra, Springer-Verlag, second edition (1979), 80-81. MR 80g:08001
  • 8. Greechie, R., Foulis, D., Pulmannová, S., The center of an effect algebra, Order 12 (1995), 91-106. MR 96c:81026
  • 9. Habil, E., Orthosummable orthoalgebras, Inter. J. Theor. Phys. 33 (1994), 1957-1984. MR 95k:81009
  • 10. Holland, S. Jr., An $m$-orthocomplete orthomodular lattice is $m$-complete, Proc. Amer. Math. Soc. 24 (1970), 716-718. MR 41:1604
  • 11. Jenca, G., A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis (to appear).
  • 12. Jenca, G., Subcentral ideals in generalized effect algebras, Inter. J. Theor. Phys. 39 (2000), 745-755. MR 2001j:81018
  • 13. Jenca, G., Pulmannová, S., Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis 47 (2002), 443-477.
  • 14. Kôpka, F., Chovanec, F., D-posets, Math. Slovaca 44 (1994), 21-34. MR 95i:03134
  • 15. Mundici, D., Interpretations of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. MR 87k:46146
  • 16. Pulmannová, S., Congruences in partial abelian semigroups, Algebra Universalis 37 (1997), 119-140. MR 97i:06001
  • 17. Pulmannová, S., On connections among some orthomodular structures, Demonstratio Math. 30 (1997), 313-328. MR 98m:06004
  • 18. Schröder, B., On three notions of orthosummability in orthoalgebras, Inter. J. Theor. Phys. 38 (1999), 3305-3313. MR 2001g:81015
  • 19. Riecanová, Z., On proper orthoalgebras, difference posets and Abelian inverse semigroups, Tatra Mt. Math. Publ. 10 (1997), 119-128. MR 98d:06003

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 06F05, 03G25, 81P10

Retrieve articles in all journals with MSC (2000): 06F05, 03G25, 81P10


Additional Information

Gejza Jenca
Affiliation: Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia
Email: jenca@kmat.elf.stuba.sk

Sylvia Pulmannová
Affiliation: Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
Email: pulmann@mat.savba.sk

DOI: https://doi.org/10.1090/S0002-9939-03-06990-9
Keywords: Effect algebra, central element, orthocomplete
Received by editor(s): April 3, 2002
Published electronically: April 1, 2003
Additional Notes: This research was supported by grant G-1/7625/20 of MŠ SR, Slovakia and grant VEGA 2/7193/20
Communicated by: Lance W. Small
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society