A TAUBERIAN THEOREM FOR VILENKIN SERIES

W. R. WADE

(Communicated by Andreas Seeger)

Abstract. There are a number of papers in the literature which contain Cesàro analogues of results already known for martingale sums of Vilenkin-Fourier series. We show that for Vilenkin systems of bounded type, these are not merely analogues but actually generalizations. Indeed, we prove that convergence of the Cesàro means of a Vilenkin series S implies convergence of martingale partial sums of S itself.

§1. Introduction

Let $\mathbb{N} := \{0, 1, 2, \cdots\}$, and $\mathcal{P} := \{p_0, p_1, \cdots\}$ be any sequence of integers which satisfies $p_n \geq 2$. For each $n \in \mathbb{N}$ set $P_n := p_0p_1 \cdots p_{n-1}$, where the empty product is by definition 1. The multiplicative Vilenkin group associated with \mathcal{P} is the set $G := \{(x_0, x_1, \cdots) : x_k \in \mathbb{N} \text{ and } 0 \leq x_k < p_k\}$ together with the operation

$$x + y := (x_0 \oplus y_0, x_1 \oplus y_1, \cdots),$$

where $x = (x_0, x_1, \cdots)$, $y = (y_0, y_1, \cdots)$ and, for each k, $x_k \oplus y_k$ represents the sum of x_k and y_k modulo p_k. The dual group of G is the system $(w_n, n \in \mathbb{N})$ defined for $x = (x_0, x_1, \cdots)$ by

$$w_n(x) := \prod_{k=0}^{\infty} \exp\left(\frac{2\pi i n_k x_k}{p_k}\right),$$

where the coefficients n_k are integers which satisfy $0 \leq n_k < p_k$ and $n = \sum_{k=0}^{\infty} n_k P_k$ (see Vilenkin [4] for details). When $p_k := 2$ for all k, the group G is called the dyadic group and the characters w_n are called the Walsh system. When $p_k = O(1)$, the system $\{w_n\}$ is called a (multiplicative) Vilenkin system of bounded type.

It is well known that G is a compact group for each collection of radices \mathcal{P}, and that the corresponding Vilenkin system $\{w_n\}$ is a complete orthonormal system on G. Moreover, the group G can be identified with the interval $[0, 1)$ by taking an $x = (x_0, x_1, \cdots) \in G$ to the number

$$x := \sum_{k=0}^{\infty} x_k P_k^{-1}. $$

Under this identification, Haar measure on G is taken to Lebesgue measure on $[0, 1)$.
A Vilenkin series is a series of the form $S := \sum_{k=0}^{\infty} a_k w_k$, where a_k is some sequence of complex numbers. For each $x \in G$ and $n \in \mathbb{N}$, the partial sums of a Vilenkin series S are defined by

$$S_n(x) := \sum_{k=0}^{n-1} a_k w_k(x).$$

The partial sums S_n form a martingale in $L^2(G)$ which allows one to use martingale convergence theorems on Vilenkin series.

§2. Preliminaries

For each nonnegative integer n, define intervals on G by

$$I_0(0) := G,$$

and

$$I_n(j) := \left\{ x = (x_0, x_1, \cdots) \in G : \sum_{k=0}^{n-1} x_k P_n^{-1} = \frac{j}{P_n} \right\}$$

for $j = 0, 1, \cdots, P_n - 1$, $n = 1, 2, \cdots$. Recall that $\{I_n(0)\}_{n=0}^{\infty}$ is a nested sequence of subgroups of G which forms a neighborhood base at the origin, and for each n, $\{I_n(j)\}_{j=0}^{P_n-1}$ is a collection of pairwise disjoint compact sets in G whose union is G. In particular, given $x \in G$ and $n \in \mathbb{N}$, there is a unique $0 \leq j < P_n$ such that $x \in I_n(j)$. We shall denote this interval by $I_n(x)$.

Denote the Haar measure of a subset E of G by $m(E)$ and the Lebesgue measure of a subset E of $[0, 1)$ by $|E|$. Notice that under the identification of G with $[0, 1)$, the interval $I_n(j)$ corresponds to the interval $[jP_n^{-1}, (j+1)P_n^{-1})$. In particular,

$$m(I_n(j)) = P_n^{-1}$$

for $0 \leq j < P_n$ and $n \in \mathbb{N}$.

Let $x \in G$. A sequence of measurable sets E_j in G is said to shrink nicely to x if there exist integers $r_j \to 0$, as $j \to \infty$, and an absolute constant $\alpha > 0$ such that $E_j \subset I_{r_j}(x)$ and

$$m(E_j) \geq \alpha \cdot m(I_{r_j}(x)),$$

for $j = 1, 2, \ldots$. By using the identification of G with the unit interval, and of Haar measure with Lebesgue measure, it is easy to check that if E is a measurable subset of G and h represents the characteristic function of E, i.e., $h(x) = 1$ for $x \in E$ and $h(x) = 0$ for $x \notin E$, then

$$\frac{1}{m(E_j)} \int_{E_j} h \, dm \to 1$$

almost everywhere $[m]$ on E for any sequence of sets E_j which shrinks nicely to x (see Rudin [2], p. 140). In particular, if E_j shrinks nicely to x, then

$$\lim_{j \to \infty} \frac{m(E \cap E_j)}{m(E_j)} = 1$$

for almost every $x \in E$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
§3. The main result

For each \(x \in G \) and each integer \(n > 0 \), the Cesàro means of \(S_n \) are defined by

\[
\sigma_n(x) := \frac{1}{n} \sum_{k=1}^{n} S_k(x).
\]

It is well known (and easy to see) that if \(S_k \) converges to some limit \(f \), as \(k \to \infty \), then \(\sigma_n \to f \), as \(n \to \infty \). We will obtain the following partial converse to this result. (The Walsh version of this result was obtained by Shaginyan [3] in 1974.)

Theorem 1. Suppose \(E \) is a measurable subset of \(G \) and \(S \) is a Vilenkin series whose Cesàro means satisfy

\[
\lim_{n \to \infty} \sigma_{p_n}(x) = f(x), \quad x \in E,
\]

for some finite-valued, measurable function \(f \). If the Vilenkin system is of bounded type, then

\[
\lim_{n \to \infty} S_{p_n}(x) = f(x)
\]

for almost every \(x \in E \).

Proof. We may suppose that \(E \) is of positive Haar measure, i.e., \(m(E) > 0 \). Fix \(0 < \epsilon < m(E)/2 \). By hypothesis, \(f_n(x) := \sigma_{p_{n+1}}(x) \) converges to \(f(x) \) for \(x \in E \), as \(n \to \infty \). Thus by Egoroff’s Theorem, we can choose a measurable subset \(E_0 \) of \(E \) such that \(f_n \to f \) uniformly on \(E_0 \) and the measure of \(E_0 \) satisfies \(m(E_0) > m(E) - \epsilon \).

Let \(x \in E_0 \) be a point which satisfies (3) for every sequence \(E_j \) which shrinks nicely to \(x \). For each fixed positive integer \(j \), let \(W_j \) represent the collection of indices \(\ell \) which satisfy \(I_{j+1}(\ell) \subset I_j(x) \). If \(\ell \in W_j \) and

\[
B_j := I_{j+1}(\ell) \neq A_j := I_{j+1}(x),
\]

let \(E_j \) represent the union of \(A_j \) and \(B_j \). By construction, \(E_j \subset I_j(x) \) and by (2),

\[
m(E_j) = 2m(I_{j+1}(x)) = \frac{2}{p_j M_p} \geq \frac{2}{M M_p} = \frac{2}{M} m(I_j(x)),
\]

where \(M := \sup \{ p_i : i \in \mathbb{N} \} \). Thus \(A_j \) and \(E_j \) both shrink nicely to \(x \), as \(j \to \infty \).

It follows from (3) that \(m(E_0 \cap A_j)/m(A_j) \to 1 \) and \(m(E_0 \cap E_j)/m(E_j) \to 1 \) as \(j \to \infty \).

Let \(n \in \mathbb{N} \) be so large that \(m(E_0 \cap A_n)/m(A_n) < 5/4 \) and \(m(E_0 \cap E_n)/m(E_n) > 3/4 \). Since \(B_n = E_n \setminus A_n \) and \(m(E_n) = 2m(A_n) = 2m(B_n) \), such a choice for \(n \) implies

\[
\frac{m(E_0 \cap B_n)}{m(B_n)} = \frac{m(E_0 \cap E_n) - m(E_0 \cap A_n)}{m(E_n)} = \frac{2m(E_0 \cap E_n)}{m(E_n)} - \frac{m(E_0 \cap A_n)}{m(E_n)} > \frac{6}{4} - \frac{5}{4} > 0.
\]

In particular, \(E_0 \cap B_n \) is uncountable.

We have proved that if \(n \) is sufficiently large, for each \(\ell \in W_n \) which satisfies \(I_{n+1}(\ell) \neq I_{n+1}(x) \), there exists an \(x_n(\ell) \in E_0 \cap I_{n+1}(\ell) \). The restriction \(I_{n+1}(\ell) \neq I_{n+1}(x) \) is not needed. Indeed, if \(\ell \) satisfies \(I_{n+1}(\ell) = I_{n+1}(x) \), then \(x_n(\ell) := x \) also belongs to \(E_0 \cap I_{n+1}(\ell) \). Thus, for \(n \) sufficiently large, it is possible to choose points \(x_n(\ell) \in E_0 \cap I_{n+1}(\ell) \) for all \(\ell \in W_n \).
We claim that for these points,
\[
\sum_{\ell \in W_n} \sigma_{P_{n+1}}(x_n(\ell)) = \sigma_{P_n}(x) + (p_n - 1)SP_n(x).
\]

To verify (5), let \(y \in G\) and notice by definition that
\[
\sigma_{P_{n+1}}(y) = \frac{1}{P_{n+1}} \sum_{k=1}^{P_{n+1}} S_k(y)
\]
\[
= \frac{1}{P_n P_n n} \sum_{k=1}^{P_n} S_k(y) + \frac{1}{P_n P_n n} \sum_{k=P_n+1}^{P_{n+1}} S_k(y)
\]
\[
= \frac{1}{P_n} \sigma_{P_n}(y) + \frac{1}{P_n P_n n} \sum_{k=P_n+1}^{P_{n+1}} S_k(y) = I_1(y) + I_2(y).
\]

Look at a typical term \(T(y) := a_\ell w_k(y)\) in one of these sums where \(y = x_n(\ell)\). If \(T\) comes from \(I_1\), then \(k\) is less than \(P_n\). Since the Vilenkin function \(w_k\) is constant on \(I_n(x)\) and \(x_n(\ell) \in I_n(x)\), it is clear that \(T(x_n(\ell)) = T(x)\) for all \(\ell \in W_n\). Since the number of intervals of the form \(I_{n+1}(\ell)\) which are subsets of \(I_n(x)\) is \(P_n\), it follows that
\[
\sum_{\ell \in W_n} I_1(x_n(\ell)) = \sum_{\ell \in W_n} \frac{1}{P_n} \sigma_{P_n}(x) = \sigma_{P_n}(x).
\]

On the other hand, suppose that \(T\) comes from \(I_2\) and \(P_n < k \leq P_{n+1}\). Notice that \(\{I_{n+1}(\ell) : \ell \in W_n\}\) contains every subinterval of \(I_n(x)\), hence \(\{w_k(x_n(\ell)), \ell \in W_n\}\) ranges over every \(p_n\)th root of unity. Since the sum of \(p_n\)th roots of unity is zero, we have
\[
\sum_{\ell \in W_n} w_k(x_n(\ell)) = 0.
\]

Consequently, adding up the values of \(I_2\) at \(y = x_n(\ell)\), as \(\ell\) runs over \(W_n\), cancels higher order terms and multiplies lower order terms. Indeed, since the number of intervals of the form \(I_{n+1}(\ell)\) which are subsets of \(I_n(x)\) is \(P_n\) and \(P_{n+1} - P_n = (p_n - 1)P_n\), we have
\[
\sum_{\ell \in W_n} \sum_{k=P_n+1}^{P_{n+1}} S_k(x_n(\ell)) = \sum_{\ell \in W_n} \sum_{k=P_n+1}^{P_{n+1}} S_{P_n}(x) = p_n(p_n - 1)P_n SP_n(x).
\]

It follows from (6) that
\[
\sum_{\ell \in W_n} \sigma_{P_{n+1}}(x_n(\ell)) = \sigma_{P_n}(x) + (p_n - 1)SP_n(x),
\]
i.e., (5) holds.

Solve (5) for \(SP_n\) to write
\[
SP_n(x) = \frac{1}{P_n - 1} \left(\sum_{\ell \in W_n} \sigma_{P_{n+1}}(x_n(\ell)) - \sigma_{P_n}(x) \right).
\]

By construction, \(x_n(\ell)\) belongs to \(I_n(x)\), hence \(x_n(\ell) \to x\), as \(n \to \infty\), for each \(\ell \in W_n\). Since the characters \(w_k\) are continuous on the group, \(w_k(x_n(\ell)) \to w_k(x)\), as \(n \to \infty\), for each \(k \in \mathbb{N}\). But \(f\) is the uniform limit of \(f_n\) on \(E_0\) and each \(f_n\) is a Vilenkin polynomial. Since \(x_n(\ell) \in E_0\), it follows that \(f(x_n(\ell)) \to f(x)\) as \(n \to \infty\).
Let g (respectively, g_n) represent the real part of f (respectively, of f_n). By construction and the observation just made, we can choose n so large that
\begin{equation}
\Re \left[\sigma_{P_n+1}(x_n(\ell)) \right] = g_n(x_n(\ell)) \geq g(x_n(\ell)) - \frac{\epsilon}{2} \geq g(x) - \epsilon.
\end{equation}
Substituting this estimate back into (7), we obtain
\begin{equation}
\Re (S\{P_n\}(x)) \geq \frac{1}{p_n-1} \left(p_n g(x) - p_n \epsilon - \Re \left[\sigma_{P_n}(x) \right] \right)
\end{equation}
and
\begin{equation}
\geq \frac{1}{p_n-1} (p_n g(x) - \Re \left[\sigma_{P_n}(x) \right]) - M\epsilon.
\end{equation}
Take the limit infimum of this inequality as $n \to \infty$, apply hypothesis (4), and then let $\epsilon \to 0$. It follows that
\begin{equation}
\liminf_{n \to \infty} \Re \left[S\{P_n\}(x) \right] \geq g(x) = \Re \left[f(x) \right]
\end{equation}
for almost every $x \in E_0$. Since $|E_0| > |E| - \epsilon$, we can replace E_0 by E. Hence, \textbf{lim inf}$_{n \to \infty} \Re \left[S\{P_n\} \right] \geq \Re \left[f \right]$ almost everywhere on E. By repeating the entire argument with the inequalities in (9) reversed, we see that \textbf{lim sup}$_{n \to \infty} \Re \left[S\{P_n\} \right] \leq \Re \left[f \right]$ almost everywhere on E. A similar argument works for the imaginary parts. We conclude that $S\{P_n\} \to f$ almost everywhere on E as $n \to \infty$.

References

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996